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A journey towards modular composition

Engineering biology: Why and how



Engineering biology: historical view
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How do we engineer cells with de novo decision making

Decision making is encoded in synthetic DNA

Chromosome Plasmids
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synthetic DNA
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Synthetic DNA encodes genes that express proteins regulating expression of other genes (synthetic/endogenous)
= regulatory interactions create circuits

= interactions can be externally controlled by chemical signals
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A journey towards modular composition

Modular composition: A grand challenge



Modular design in engineering biology

Networks

Describing a sophisticated
.. My system as the composition of
simpler subsystems helps
computers  overcoming the complexity of

we have large libraries of genetic
parts

design: T - we can synthesize DNA very
S Pathways C]UI ckIy
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increased scale is becoming possible in practice, modularity fails Joar
a system’s I/O properties are affected by surrounding systems
modaularity is critical to manage complexity/time - need to re-design “modules” after composition

the 1/0 behavior of a “module” should not change upon
composition

for a circuit with 11 genes it takes

one PhD thesis of 5-6 years



Some reasons why modularity is a challenge

ﬁoads applied by downstream modules change the behavior of \
Cellular resources upstream systems
U (Del Vecchio, Hespanha, Klavins, Papachristodoulou, Sontag, ...)
Modules apply a load the cellular resources: creates subtle couplings
(Bates, Del Vecchio, Murray, Stan,... )
o |5 ] I ------------»Modaules often have “off-target” interactions, affect growth rate, and
: Cellular ‘circuitry’, growth, ... . this, in turn, has global effects on a module’s dynamics
e eeceeceeceiceieeieeeeeeeeee et (Khammash, Papachristodoulou, Stan, ...)
0,25 Aoki et al. Nature 2019
. . . . Olsman et al. Cell Systems 2019
02 # articles in b'OIOgy Journals Chevalier et al. Cell Systems 2019
these issues can be viewed as lack ’ Agrawal et al. Nat Comm 2019
of robustness to perturbations o Kelly et al. NAR 2018
f]'j control and synthetic biology Agrawal et al. ACS Syn Bio 2018
) ) ) > ic hi Darlington et al. Nat Comm 2018
can we “insulate” desired 1/O behaviors = synthetic biology ' > Huang et al. Nat Comm 2018
from these perturbations? L /l‘/ Ceroni et al. Nat Methods 2018
- this is a Control System Design problem %%
e
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A journey towards modular composition

Inter-module loads and the load driver
Disturbance attenuation via time scale separation



Inter-module loading changes upstream system’s dynamics
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loads change the behavior of the upstream system = we fail to transmit the signal to the downstream system
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systems & signals representation of loads: retroactivity

u—» I — f(ajv u, S) y—>
. y=Y(z,u,s) |
4_ <_ . .
retroactivity to the input r = R(m, u, S) retroactivity to the output

the 1/0 model of the isolated system is obtained when s=0



Retroactivity is a reaction flux affecting upstream system’s output
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Insulation devices to mitigate retroactivity

consider retroactivity as a state-dependent disturbance

u
upstream > Y » downstream
system insulation device system
s _]"_ - < S
1. r=0
2. sis attenuated
Principle 1 Principle 2
high-gain feedback ‘ time scale separation
requires an explicit negative no explicit feedback required

feedback
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From high-gain feedback to time-scale separation

large input amplification

) and a large negative feedback

what biomolecular systems
can realize it?
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Retroactivity attenuation via time-scale separation

isolated system connected system
U, oy, a 7
upstream r [insulation device| . _ . upstream r  linsulation device| downstream
system | | o — ~ system . . system
upstream system @ = fo(u,t) +r(u,y) upstream system U = fo(u,t) + (U, Y)
insulation device 3 = G1)f1(u,y) insulation device ¥ = G1f1(4,7) HG2M s(7, v)
large G > 1 downstream system © = —GoNs(y, v) very large rates
Go > Gy
Fact: There are a matrix 7'and a non-singular matrix P suchthat P- M — T - N = 0 (closed system)
Theorem: If W is Hurwitz with y = h(u) = fi(u,y) =0, then:
Y ly=h(w)

ly(t) — g(t)|| = O(1/G1), Vt € [ty,ts] independent of G2Ms

Proof: use singular perturbation and nested application of Tikhonov’s theorem

change of cords: * = Py + Tv 12 = Pfi(u,y), e1 =1/G; €, = 0= §= h(a)
62”[) — —S(Zj,?)), €y — 1/G2



Appllcatlon to signal transduction networks

—1 Z:gene expression time scale .
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The Load Driver: Insulation by time scale separation

recall
| System upstream system downstream
) . Input
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The Load Driver: Insulation by time scale separation
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The Load Driver: Insulation by time scale separation

Step-Up Step-Down

— Buffered - Ox
— Unbuffered -0x

Experiments with fast time scales 3000}
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-

; 2000t
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1000y . Negaive 1000}
oL — . e D —— - —
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Experiments with slow time scales

1x

(reduced amounts of YPD1 and SKN7 obtained
through weaker constitutive promoters)

Fluoresence (A.U.)

insulation property is lost

Time (min) Time (min)

Slow/fast/slow pattern allow to reliably transmit signals to large loads: the
synergy between slow transcription and fast signal transduction is likely to be used
by natural systems to insulate signals from downstream loads

Mishra et al., Nat. Biotech 2014



A journey towards modular composition

Engineering biology: Why and how

Modular composition: A grand challenge

Inter-module loads and the load driver —| upstream .| downstream

Disturbance attenuation via time scale separation system system

Resource loading and the resource decoupler
Disturbance rejection despite leaky integral actions

cellular resources

Decentralized implementation

Outlook




Modules become coupled by loading cellular resources

< é

resources expected behavior
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fast dynamics
- QSS

120000 1 experimental data

100000 -
80000 -
60000 -
40000 -

20000 -

B (GFP fluorescence)

0

cellular resources
(ribosomes)

|

slower dynamics
19



Coupling can be mathematically captured by “hidden” graphs

use time scale separation and conservation of resources TillEa 6 dlrEe FRle R rEEE e

activators become “effective

repressors” for non-target nodes
resource demand

coefficient

hidden interac%)ns (easily tunable) O 4| @ O

X; = Fy(u;) — 6X; X, = Z _5X, . J 4

1 z( z) 1 A 1‘|‘ZkaFk(uk) 1 ‘______E _____ _I
intended regulatory function \ J re.presso”rs EEEME "EVHETE

, , activators” for non-target nodes
Hz(u) effective regulatory function
S Ji

effective , ar == Siuialing
R OHiw) | OF/0u F; Y. J;0F, /a; O ®»O5®
graph Ou \(1+Zj Jij)j &1*'23' Jij)j |l 1
ne ~ O——4®O—®
re-scaling of intended  “hidden” interaction

the effect on target nodes

regulatory links graph i< weaker

Qian et al. ACS Syn Bio, 2017



The effective interaction graph of an activation cascade is an iFFL

with hidden interactions O > O O
]
©—& -0 0-—0—0 Bor | =N
D> Expected behavior o | BE—0
"""""""""" & 5.
J: DNA copy # =
RBS strength b ; l
o [
u o o0 = B0
| = A
AHL (u) |

10 20 30 40 50 60 70 80
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o
[=)]

__________________________________________________________ —CAS 1.0/ 60
—CAS 1.0/ 30
can use J to tune 04 1 _AS0.3/60
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Quan et al. ACS Syn Bio, 201/ log [AHL] (nM)



Network disturbance attenuation

system without hidden interactions system with hidden interactions
resource demand

at node i
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(%) Y;
—> genetic >

w; module i d;
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Network disturbance attenuation

system without hidden interactions

U;
——>| biomolecular
controller <
Yi
> genetic
w; module i d;
ik I S !
1 1
1 1
1 1
' l
bems g,ot\)g rest of net €~~~

=) d;

JZt

system with hidden intgractions
resource demand

at node i

:Zdﬂ'

J71

Problem: Design a local feedback controller
such that y; depends only on v; and it is
independent of w;
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Network disturbance attenuation

isolated system
(%)
——>| biomolecular

@‘
controller
Yi
> genetic >
module i
——— ————>
w; dz

Problem 1: Design a biomolecular
controller such that the input/output
response v; to y; is independent of w;

o /

connected system

U;
——>| biomolecular
%‘
controller
Yi
> genetic >
module i
=== e :
: i
w; i idz
[— =

chtg rest of net

=) d;

JZ1

Problem 2: Determine conditions such that
the biomolecular controller can still
attenuate the effect of w; on y;

(i.e., ensure network stability)
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Disturbance rejection despite leaky integrators

(V)

—>| biomolecular < Approach: For v and w constants, use integral control, e.g.

controller )
z = f(x,v,z,w), y=g()

2 Y z2=k(v—y)
—> genetic > under stability conditions, y is independent of w at steady state
w module T

-——=>

Challenge: molecular decay is unavoidable in vivo due to cell growth = integrator leakiness

T = f(;z;, zZ, w), y = g(x) cannotsend growth to zero &= f(x,z,w), y=9g(z) quasi-integral control
. - increase speed of - 1 (QIC)
z=k(v—y) -z all controller’s reactions z = E(v —y)— 72 structure

Theorem: 1 = f(fﬁa 2 w) If this closed loop system with 7 = 0

, 1 is LES for small € > 0
1 = Eh<vazay) — 7~

biomolecular implementation:

all fast controller reactions

, k Then: y(€) — v as € — 0 independent of w compute the difference and
2 = E(v —Yy) — 722 integrate
y = g(z)

25
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Quasi-integral control implementation via SRNA silencing

(v
———>| biomolecular
controller
2z
< Yy
> genetic >
w module
_———
y = R(w)m — oy
0
m —mMs - ym— fast RNA
g interactions
S N —ms + S (for “free”)
€

high RNA transcription rates

(we can tune)

Qian and Del Vecchio. J. Royal Society Interface, 2018

ribosome

availability change

- EAN
-IZ|:[>- -@IL

regulated

gene

z=m— 8
ez=(v—y)—eyz (QIC)

closed loop system wheny =0
is LES
then y(¢) - vase—0

independent of disturbance

Briat et al. (2016)
sequestration-based
feedback

time (hr) 30
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Tracking performance of quasi-integral control: a SSP problem

Problem: With time-varying inputs, can we still attenuate effect of disturbance as timescale separation between

controller and plant increases (¢ — 0) ? e-values of linearization
_ . ] ol [ @ e=o0.001 ® |
Not obvious - tempting observation: Boundary layer dynamics ol | ® e=001
e ¢=0.1
iy = R(w)m — &y e=0=yt)=v(t) m =uv(t)—0ms ol e |3
° - I ot @ Q'é
e = v(t) — Oms — eym independent of w s’ =y —6ms £ 2 ° ¢ o £
. or smaller e ® ™
€ =y —tms —eys Jacobian is singular everywhere |
—> Singular singular perturbation (SSP) problem a0} ° Y
Z'/ — f(y7 X, t)) Y c Rq 104 102 . 100 1072

G.jf:g(y,ZC,E),ﬂjERp . . e . . . e .
If zero e-value of J has algebraic multiciplity (am) = geometric multiciplity (gm) = system

, ' can be taken to standard SP form by e-independent coordinate change with less than p fast
y = ef(y, L t> variables (Gu, Nefedov and O’Malley (1989); Sobolev (2005))
' = g(y,x,€) - not applicable here since gm=1 and am=2 (am<gm)

- Marino & Kokotovic (1988): there is no €-independent diffeomorphism to standard SP form

Asymptotic expansion (with fractional exponents) can address some SSP problems
assuming a limiting solution exists as ¢ — 0 (O’Malley & Jameson (1975); O'Malley (1979))
J has more than g zero e-values - not applicable — no limiting solution exists as € — 0

[

27
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Solving the SSP problem

: Yy
y = A [ - ] + Byw(l), y € R? < 0 0 ) - zero e-value has am = g+ and gm=g¢
assume J =

Agl A82 - all other e-values have negative real part
ex = As° [ gyE ] + Bov(t), x € RP

- There is an e-independent coordinate change with .S Hurwitz

y = Ay [ z ] + Biw(t) slow e-dependent reduced system

: — = A1+ A1221 + Biw(t) + Byo(t
e21 = Ry + Byv(t) + €Dz one-dimensional mmp & € 4 . Y 1y +_ 1221+ _1w( )+ Bav(t)
in the fast dynamics | ¢z, = Ry + Bov(t) + eDzy

21

ez’2:SZQ+B+3'U(t)+€E[ Y ] fast

Theorem (SSP): Assume that:
Al. inputs and their first derivatives bounded Then:
A2. the reduced system is such that D < 0, (A11, A12) controllable, RA15 > 0

lim sup [Jy(t) — y(t)|| = O(Ve)

t—00

Proof : - decompose the error system into a slow and a fast subsystem

- § Hurwitz > fast subsystem is ISS with gain  O(e) } result follows from ISS small gain theorem

- A2. = slow subsystem is ISS with gain (9(1/\/5) for € sufficiently small

28
Qian and Del Vecchio, IEEE Control Systems Letters, CDC, 2018



Solving the robust tracking problem

original system
e-dependent reduced system

y = A [ i ] + Biw(t), y € RY

t— 00

et = Ay [ ’ ] + Byu(t), = € RP €21 = Ry + Byo(t) + Dz

Theorem (robust tracking for reduced system):
If, in addition, all input derivatives are bounded, then limsup || Rg(t) + Bav(t)|| = O(V/e)

t—o0

> limsup ||y(t) + R ' Bav(t)|| = O(Ve) > y(t) independent of w(t) as € — 0

t— o0

1 —1

0.5F

y = R(w)m — oy

em = v(t) — Oms — eym

€s =y — Oms — evys

regulation error

0 2|0 4|0 _ 6I0 8IO 100
Hamadeh, Sontag and Del Vecchio, IEEE CDC 2016 time

J=Any+ Az + Biw(t) + Byo(t)  limsup ||ly(t) — 5(t)|| = O(/e)

-e=0.1 — e=0.01



The Resource Decoupler: insulation via fast quasi-integral control

cellular resources

U
— > >

genetic
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Huang, Qian, and Del Vecchio. Nat. Comm., December 2018
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The Resource Decoupler: insulation via fast quasi-integral control

cellular resources

w(t
. (1
— ' genetic
module
regulated

resource
competitor

regulated
gene

sRNA

Huang, Qian, and Del Vecchio. Nat. Comm., December 2018

experimental data
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The Resource Decoupler: insulation via fast quasi-integral control

cellular resources

w(t)

v AHL Fp
— | genetic | resource [~
module competitor
regulated
GFP

regulated
gene

sRNA

normalized GFP/OD

Huang, Qian, and Del Vecchio. Nat. Comm., December 2018
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The Resource Decoupler: insulation via fast quasi-integral control

regulated TX devices Y O
w ------ ) T 1
R T T v
= slow controller
)
< regulated sSRNA
< gene
3 —
o 10°r
= ,
° | fast RNA
© —— . .
3 — . interactions
£ - = R(w)m=19
E | \ y ( ) y/ ”free”
fast controller m Y ns — ym
10

40 60 80 \ 100
robustness (%)
6 x10%

(1-relative change) x100% 5 .

high RNA TX rates
T, easily tunable by sRNA promoter
T,, GFP promoter strength

6 1000 33
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A journey towards modular composition

Engineering biology: Why and how

Modular composition: A grand challenge

Inter-module loads and the load driver —| upstream .| downstream
system system

Disturbance attenuation via time scale separation

Resource loading and the resource decoupler
Disturbance rejection despite leaky integral actions

cellular resources

Decentralized implementation

Outlook
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Network disturbance attenuation

Ze Isolated system Connected system
U’L; ! /Ui yZ
——> biomolecular — >
controller € ¥ Zg
w0 L i
Y | |
. ] genetic > i |
H H H 1
-+ ------ > modulel | . 5—-) i Eg’\i rest of net |
i d IRl S
........................................................................ jAi

We have: for constant w; bounded independent of €
Problem: Can we guarantee that

Tim [lyi(t) — h(v:)]| = O(Ve)

- Yi independent of W; = ensure that w; steady state has €-independent bound
= ensure closed loop system approaches steady state

Jim_ [l:(8) = h(w)]| = O(V&) ]
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Network disturbance attenuation

ensure that W; has an € -independent steady state bound

U; Yi
—_— R
ZE

1
w; 3¢ e dz

Q-
ﬁz’i rest of net
oF— €

JF

physics leads to steady state relationships:

(i) system i d; = g;(vi) + Gi(vi) - wi + Gi(w;) - O(e)

/

linear term in W;

(ii) interconnection  w; = g d;
JF1
Qian and Del Vecchio, Proc. |IEEE CDC 2016

N

HOT in W;

(iii) system (i)+(i)> Aw) - w = g(v) + g(w)O(e)

1 _§2 ’ _gn
—g1 1 =g —3Jn
A(v) = :
- —92 - —gn1 1

> 1If A(v) isinvertible, then w has € -independent bound

sufficient check: diagonal dominance Zﬁj(vj) <1, Vi

J#1
f]j (Uj) increasing function of Vj
N%
single node AV3 net dist attn obtain constraints
dist attn on tunable parameters

as a function of the

——> number of nodes
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Network disturbance attenuation

ensure closed loop system approaches steady state on-going: time-varying inputs and regulatory interactions
U; Yi
_— — €
Eg JF1 regulatory |e—
w; 51 e d; interactions
i i
1 1
1 I
| | V; &
' —

] Q- ! €
i ))E/i rest of net I > i d
[ o € €----- W; __ _)l ________ ?

JF

. € . . €
Assumption: Zz is input-to-state/output monotone Y E=) Zd
—————— ! wz —_— j (————J
— use Small Gain Theorem for Monotone Systems oy
( )
A(v) diagonally dominant > unique/globally attractive equilibrium I preparation —ingredients:
small-gain theorem for singularly perturbed monotone

€
Note: we can prove the controller makes Zz SP - monotone systems

if its dynamics are much faster than the plant
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An engineering framework for insulating genetic modules from perturbations

The load driver

uses time scale separation in place
of high-gain negative feedback

The resource decoupler

/»

Loads applied by downstream modules change the
behavior of upstream systems

Loads that modules apply to cellular resources
cause subtle couplings among theoretically
independent modules
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Some reasons why modularity is a challenge

ﬁoads applied by downstream modules change the behavior of \
Cellular resources upstream systems
U (Del Vecchio, Hespanha, Klavins, Papachristodoulou, Sontag, ...)
Modules apply a load the cellular resources: creates subtle couplings
— .
(Bates, Del Vecchio, Murray, Stan,... )
o |5 ] I ------------»Modaules often have “off-target” interactions, affect growth rate, and
: Cellular ‘circuitry’, growth, ... . this, in turn, has global effects on a module’s dynamics
e eeceeceeceiceieeieeeeeeeeee et (Khammash, Papachristodoulou, Stan, ...)
0,25 Aoki et al. Nature 2019
. . . . Olsman et al. Cell Systems 2019
02 # articles in b'OIOgy Journals Chevalier et al. Cell Systems 2019
and many more... ' Agrawal et al. Nat Comm 2019
Kelly et al. NAR 2018
- lab conditions: temperature, nutrients, Ph,... &, control and synthetic biology Agrawal et al. ACS Syn Bio 2018
> synthetic biology a Darlington et al. Nat Comm 2018
. =~ » Huang et al. Nat Comm 2018
- cell type/strain Q /l‘/ Ceroni et al. Nat Methods 2018
0,05

growth phase

//‘\

«

source: Web of Sci
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