58th IEEE Conference on Decision and Control

Final Program
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1</td>
</tr>
<tr>
<td>WELCOME FROM THE PRESIDENT OF THE IEEE CONTROL SYSTEMS SOCIETY</td>
<td>3</td>
</tr>
<tr>
<td>WELCOME FROM THE 2019 CDC GENERAL CHAIR</td>
<td>4</td>
</tr>
<tr>
<td>WELCOME FROM THE 2019 CDC PROGRAM CHAIR</td>
<td>6</td>
</tr>
<tr>
<td>CONFERENCE ORGANIZING COMMITTEE</td>
<td>7</td>
</tr>
<tr>
<td>TECHNICAL PROGRAM COMMITTEE</td>
<td>9</td>
</tr>
<tr>
<td>CSS CONFERENCE EDITORIAL BOARD</td>
<td>10</td>
</tr>
<tr>
<td>CSS TECHNICAL COMMITTEES</td>
<td>12</td>
</tr>
<tr>
<td>SEMI-PLENARY LECTURES AND CSS BODE LECTURE</td>
<td>13</td>
</tr>
<tr>
<td>SPECIAL SESSIONS</td>
<td>18</td>
</tr>
<tr>
<td>TUTORIAL SESSIONS</td>
<td>21</td>
</tr>
<tr>
<td>PRE-CONFERENCE WORKSHOPS</td>
<td>23</td>
</tr>
<tr>
<td>SOCIAL PROGRAM</td>
<td>31</td>
</tr>
<tr>
<td>CONFERENCE INFORMATION</td>
<td>32</td>
</tr>
<tr>
<td>CONFERENCE VENUE</td>
<td>33</td>
</tr>
<tr>
<td>LOCAL ATTRACTIONS</td>
<td>35</td>
</tr>
<tr>
<td>SPONSORS AND EXHIBITORS</td>
<td>39</td>
</tr>
<tr>
<td>2019 IEEE CSS AWARDS</td>
<td>43</td>
</tr>
<tr>
<td>CDCS: PAST, PRESENT AND FUTURE</td>
<td>49</td>
</tr>
<tr>
<td>PROGRAM AT A GLANCE</td>
<td>53</td>
</tr>
<tr>
<td>TECHNICAL PROGRAM</td>
<td>61</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>161</td>
</tr>
<tr>
<td>KEYWORD INDEX</td>
<td>197</td>
</tr>
</tbody>
</table>
Welcome from the President of the IEEE Control Systems Society

Je vous souhaitez la bienvenue sur la Côte d’Azur.

The IEEE Conference on Decision and Control, CDC, is the Control Systems Society’s largest and longest running conference; 58 years strong and the premier broad-spectrum annual event in the control calendar. This is CDC’s first visit to France and promises an extraordinary location and stellar programs: technical, social, students and workshops. I am truly excited and delighted to be in Nice – about 25 years ago I lived in Antibes, roughly 20 km up the road on the opposite side of Baie des Anges. General Chair Carlos Canudas de Wit and Program Chair Rodolphe Sepulchre lead a super team of high-performance researchers and organizers. So I am even more enthralled to witness the conference content and events. CDC provides a splendid opportunity to refresh both friendships and technical skills. It also allows one to meet new people especially the up-and-comer wizards.

For all of CDC’s professionalism and intellectual clout, it relies on a volunteer base of individuals who each has a day-job. This welcome message also allows me to proffer sincere thanks to every one of them for their sterling efforts operating under deadlines to put together the event in all its complexity and color. Being part of IEEE, the Control Systems Society and therefore CDC are run by volunteers for the benefit of the members, conference attendees and publications audience. The multi-layered and sophisticated organization of CDC has been honed from years of experience of these volunteers but definitely leaving sufficient room for local innovation and imagination. Naturally, the leaders of CDC 2019 have a great background and knowledge of prior events. But so too they have personal views and values which they bring to the planning and execution. This helps make CDC a rewarding experience for all. Clicking on the Committees link from the main website brings up the first tranche of the organization. There are many others at the next level, such as the Conference Editorial Board which garner reviews for every submission. The reviews are created by another group of volunteers – even including your President, who reviewed five papers. I think that they keep the really tough ones for me. Local arrangements are another multi-faceted endeavor. To some extent, good conference organizers are like control systems; nobody notices them when they work well. So, please make a concerted effort to track down and congratulate some of the volunteers.

I was pressganged by then CSS History Committee Chair, Mike Polis, into making an historical review of the first fifty CDCs in 2011. David Castañon, General Chair of CDC number 46 in Cancun, and I, from CDC 39 in Sydney, had the unique opportunity to scan the written and oral histories of CDC for the memorable activities, technical and social. It was a difficult proposition to squeeze this into a fifty-minute presentation. It is with this tremendous fondness for CDC and hindsight of so many events that I truly welcome you to CDC 58 in Nice. I am certain that our hardworking organizers and French hosts have a remarkable conference in store for us. I have every expectation that we all will gain new friends, new expertise and new stories, each of which augurs well for our future growth. Allons-y!

Robert Bitmead

President, IEEE Control Systems Society
Welcome from the 2019 CDC General Chair

Welcome to the 58th IEEE Conference on Decision and Control at Nice!

It is more than an honor to be the General Chair of the first CDC conference organized in France. We have selected Nice among others great locations because of its weather, luminosity and radiant beauty. Although the current Nice area has been populated since prehistoric times, the starting point of Belle Nice traces back to 350 BC, when the Greeks established a place on the shores of the Mediterranean Sea, called Nikaia, according to Nike, the Greek goddess of victory. The history of Nice is essentially characterized by being a border city, which has frequently changed its sovereignty. It was successively Ligurian, Greek and Roman, before becoming part of the Ostrogothic Kingdom of Italy, then of the Eastern Roman Empire and the Kingdom of Italy (888-1024), then becoming Genoese, Provençal, Savoyard, Piedmontese and finally definitively French in 1860. Nice is today a capital of the art of living as it is attested by its typical streets, the “piazzettas”, the beaches bathed in light, the shade of the wooded parks, the effervescence of the markets, the colorful gastronomy, the drinks on the terrace, and a walk on the harbor. We are confident that you will have a productive and enjoyable stay.

The genesis of the CDC organization in France goes back to one of those distracted days when some colleagues distractily asked: "did the CDC ever happen in France? ..." Then they fixed their eyes on you and you end up being GC. Together with Dominique Sauter (Financial Chair), we formed a force group supported by the CNRS to explore different possible locations and build a proposal that eventually got accepted. Dominique has been a pillar in the organization since the very earliest times. Besides his dedicated skills on financial aspects, he dedicated many efforts in setting the main pieces of the whole conference organization.

Rodolphe Sepulchre (Program Chair), together with Christophe Prieur (Program Vice-Chair), Karl Johansson (Tutorial Chair), Ilya Kolmanovsky (Workshop Chair), and Moritz Diehl (Invited Sessions Chair), with the help of Amir Aghdam (Conference Editorial Board Chair) made an extraordinary job in building a great scientific program that you will surely enjoy. Their dedication and rigor in setting the program were highly appreciated. Edouard Laroche, together with Alessandro Giua and Tarek Hamel, took care of the local arrangements. They carefully select the food for the Banquet and receptions. Their previous experience in organizing large conferences (CDC, ECC and IFAC) was very much welcome. Alessandro's skills in mastering Excel files for room allocations made our life easy.

Antonella Ferrara (Publication Chair) did an extraordinary work in setting the Final Program Booklet and dealing with publication aspects of the conference. Her rigor and enthusiasm were a continuum. Laura Menini (Registration Chair) was extremely proactive and efficient in taking care of the registration process in a timely manner. Thanks to her for this great effort. Isabelle Queinnec was responsible for the Exhibits and Sponsorship. She and the MCI (PCO) were able to bring new sponsors to our conferences. Antoine Chaillot took care with a lot of efficiency of the student activities. He did a great job in coordinating student travel awards and organizing the newcomers’ reception. Francesco Rossi puts a lot of enthusiasm in his job of publicity chair. He set the webpage and took care of the conference advertisement and news. Bob Judd did a great job in helping us during the negotiation phase with the Congress Palace.

Thanks also to Randy Beard and Edwin Chong for supporting the conference as part of the Conference Operation Chair. I wish to express my gratitude to Jeoffrey Roussey from the MCI company acting as our PCO, for the professional support and dedication during the whole organization process, and all other
volunteers that helped in the organization. Finally, a great thanks to Julie Perrin who assisted me during the whole organization process.

Enjoy the conference, Enjoy Nice!

As John Baillieul said: “It is nice to be in Nice”

Carlos Canudas de Wit
General Chair
Welcome to the 58th IEEE Conference on Decision and Control at Nice!

The quality of the CDC program is before everything else the result of your own work as an author, and I would like to thank you all for contributing so generously to the research presented at this conference. The CDC is the prime annual conference of our field and strikes an exceptional balance between the theory and applications of control, that keep spanning broader and broader horizons. I also want to offer a special thank to the organizers of invited sessions who play a key role in highlighting special topics of importance and inspiring new research directions in a coherent manner. A total of 2320 papers were submitted this year, out of which 1340 papers were accepted. The program features 25 parallel sessions, four semi-plenary lectures, our distinguished Bode lecture, and 14 pre-conference workshops. Additionally, the program includes four tutorial sessions and five special sessions.

A number of people have worked tirelessly on putting together the program and managing the submission and review process. It was a great pleasure to work with the three Program Vice-Chairs, Christophe Prieur (contributed papers), Kalle Johansson (tutorial papers), and Moritz Diehl (invited sessions). The program was mostly completed during the ECC in Naples. Of course the experience and professionalism of the Conference Editorial Board (CEB) Chair Amir Aghdam was key to assembling the program. His help and kindness were deeply appreciated throughout the process. Ilya Kolmanovsky did an outstanding job managing and organizing the pre-conference workshops. I also wish to thank the outstanding international program committee, who worked hard in June auditing all papers and reviews, and all the CEB members who volunteered so many hours to manage the review process. Finally, you also must be thanked as well as all reviewers who ultimately ensure the quality and fairness in the selection of papers.

It was a pleasure from the very start to work on the program of a conference organized by Carlos Canudas de Wit. Carlos has been a personal friend and a key European control figure for many years. We owe him this wonderful CDC in Nice with a guaranteed Mexican touch. I would also like to thank all the previous CDC general chairs and program chairs for facilitating the task of their followers. Magnus Engerstedt’s help and tips proved as efficient as you expect them to be from Magnus ... And last but not least, thanks to Antonella Ferrara for working so smoothly on the final program booklet and other publication related activities.

I hope that you will all find this year’s CDC program rich, attractive, and inspiring. I wish you a productive and enjoyable 2019 IEEE Conference on Decision and Control in Nice!

Rodolphe Sepulchre

Program Chair
Conference Organizing Committee

General Chair
Carlos Canudas de Wit
CNRS GIPSA-Lab, France
carlos.canudas-de-wit@gipsa-lab.grenoble-inp.fr

Program Chair
Rodolphe Sepulchre
University of Cambridge, UK
r.sepulchre@eng.cam.ac.uk

Program Vice-Chair
Christophe Prieur
CNRS GIPSA-Lab, France
Christophe.Prieur@gipsa-lab.fr

Program Vice-Chair for Invited Sessions
Moritz Diehl
University of Freiburg, Germany
moritz.diehl@imtek.uni-freiburg.de

Program Vice-Chair for Tutorial Sessions
Karl H. Johansson
KTH Royal Institute of Technology, Sweden
kallej@ee.kth.se

Program Vice-Chair for Tutorial Sessions
Moritz Diehl
University of Freiburg, Germany
moritz.diehl@imtek.uni-freiburg.de

Program Vice-Chair for Tutorial Sessions
Antonella Ferrara
University of Pavia, Italy
antonella.ferrara@unipv.it

Program Vice-Chair for Tutorial Sessions
Karl H. Johansson
KTH Royal Institute of Technology, Sweden
kallej@ee.kth.se

Program Vice-Chair for Tutorial Sessions
Karl H. Johansson
KTH Royal Institute of Technology, Sweden
kallej@ee.kth.se

Publications Chair
Antonella Ferrara
University of Pavia, Italy
antonella.ferrara@unipv.it

Publications Chair
Antonella Ferrara
University of Pavia, Italy
antonella.ferrara@unipv.it

Workshops Chair
Ilya Kolmanovsky
University of Michigan, USA
ilya@umich.edu

Workshops Chair
Ilya Kolmanovsky
University of Michigan, USA
ilya@umich.edu

Conference Editorial Board Chair
Amir Aghdam
Concordia University
aghdam@ieee.org

Conference Editorial Board Chair
Amir Aghdam
Concordia University
aghdam@ieee.org

Student Activities Chair
Antoine Chaillet
CentraleSupélec, France
antoine.chaillet@centralesupelec.fr

Student Activities Chair
Antoine Chaillet
CentraleSupélec, France
antoine.chaillet@centralesupelec.fr

Finance Chair
Dominique Sauter
University of Lorraine, France
dominique.sauter@univ-lorraine.fr

Finance Chair
Dominique Sauter
University of Lorraine, France
dominique.sauter@univ-lorraine.fr

Registration Chair
Laura Menini
University of Roma Tor Vergata, Italy
laura.menini@uniroma2.it

Registration Chair
Laura Menini
University of Roma Tor Vergata, Italy
laura.menini@uniroma2.it

Local Arrangements Chair
Edouard Laroche
University of Strasbourg, France
laroche@unistra.fr

Local Arrangements Chair
Edouard Laroche
University of Strasbourg, France
laroche@unistra.fr

Local Arrangements Vice-Chair
Tarek Hamel
University of Nice Sophia Antipolis, France
thamel@i3s.unice.fr

Local Arrangements Vice-Chair
Tarek Hamel
University of Nice Sophia Antipolis, France
thamel@i3s.unice.fr

Local Arrangements Vice-Chair
Alessandro Giua
University of Cagliari, Italy
giua@diee.unica.it

Local Arrangements Vice-Chair
Alessandro Giua
University of Cagliari, Italy
giua@diee.unica.it
Exhibits and Sponsorship Chair
Isabelle Queinnec
CNRS LAAS, France
isabelle.queinnec@laas.fr

Publicity Chair
Francesco Rossi
University of Padova, Italy
francesco.rossi@math.unipd.it

Conference Operations Committee Chair
Randy Beard
Brigham Young University, USA
beard@byu.edu

Conference Operations Committee Chair
Edwin Chong
Colorado State University, USA
edwin.chong@colostate.edu
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alessandro Abate</td>
<td>University of Oxford, UK</td>
</tr>
<tr>
<td>Pedro Aguilar</td>
<td>University of Porto, Portugal</td>
</tr>
<tr>
<td>David Angeli</td>
<td>Imperial College of London, UK</td>
</tr>
<tr>
<td>Murat Arcak</td>
<td>UC Berkeley, USA</td>
</tr>
<tr>
<td>Daniel Axehill</td>
<td>Linköping University, Sweden</td>
</tr>
<tr>
<td>Alessandro Chiuso</td>
<td>University of Padova, Italy</td>
</tr>
<tr>
<td>Gerardo Espinosa-Perez</td>
<td>UNAM, Mexico</td>
</tr>
<tr>
<td>Lorenzo Fagiano</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Rolf Findeisen</td>
<td>University of Magdeburg, Germany</td>
</tr>
<tr>
<td>Antoine Girard</td>
<td>CNRS, CentraleSupélec, France</td>
</tr>
<tr>
<td>Sebastien Gros</td>
<td>Chalmers University of Technology, Sweden</td>
</tr>
<tr>
<td>Anders Hansson</td>
<td>Linköping University, Sweden</td>
</tr>
<tr>
<td>Laurentiu Hetel</td>
<td>CNRS, Centrale Lille, France</td>
</tr>
<tr>
<td>Boris Houska</td>
<td>ShanghaiTech, China</td>
</tr>
<tr>
<td>Hideaki Ishii</td>
<td>Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>Tor Arne Johansen</td>
<td>NTNU Trondheim, Norway</td>
</tr>
<tr>
<td>Colin Jones</td>
<td>EPFL, Switzerland</td>
</tr>
<tr>
<td>Raphael Jungers</td>
<td>UCLouvain, Belgium</td>
</tr>
<tr>
<td>Christopher Kellet</td>
<td>Newcastle University, Australia</td>
</tr>
<tr>
<td>Erik Kerrigan</td>
<td>Imperial College of London, UK</td>
</tr>
<tr>
<td>Lorenzo Marconi</td>
<td>University of Bologna, Italy</td>
</tr>
<tr>
<td>Katja Mombaur</td>
<td>Heidelberg University, Germany</td>
</tr>
<tr>
<td>Toshiyuki Ohtsuka</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Derek Paley</td>
<td>University of Maryland, USA</td>
</tr>
<tr>
<td>Panos Patrinos</td>
<td>KU Leuven, Belgium</td>
</tr>
<tr>
<td>Romain Postoyan</td>
<td>CNRS, University of Lorraine, France</td>
</tr>
<tr>
<td>Henrik Sandberg</td>
<td>KTH Stockholm, Sweden</td>
</tr>
<tr>
<td>Kurt Schlacher</td>
<td>JKU Linz, Austria</td>
</tr>
<tr>
<td>Andrea Serrani</td>
<td>Ohio State University, US</td>
</tr>
<tr>
<td>Iman Shames</td>
<td>University of Melbourne, Australia</td>
</tr>
<tr>
<td>Ling Shi</td>
<td>Hong Kong University of Science and Technology, Hong Kong</td>
</tr>
<tr>
<td>Bruno Sinopoli</td>
<td>Carnegie Mellon University, USA</td>
</tr>
<tr>
<td>Quoc Tran-Dinh</td>
<td>UNC Chapel Hill, USA</td>
</tr>
<tr>
<td>Mario Zanon</td>
<td>IMT Lucca, Italy</td>
</tr>
<tr>
<td>Melanie Zeilinger</td>
<td>University of Freiburg, Germany</td>
</tr>
<tr>
<td>Liguo Zhang</td>
<td>Beijing University of Technology, China</td>
</tr>
</tbody>
</table>
Chair: Amir Aghdam
Abbaszadeh, Masoud
Aguilar Bustos, Luis Tupak
Ahmed, Qadeer
Ahmed-Ali, Tarek
Ajorlou, Amir
Ali Janaideh, Mohammad
Alma, Marouane
Antunes, Duarte
Aphale, Sumeet
Ariola, Marco
Ariyur, Kartik B.
Atsumi, Takenori
Azuma, Shun-ichi
Back, Juhoon
Baglietto, Marco
Bai, He
Bako, Laurent
Balogh, Andras
Baroohah, Prabir
Basilio, Joao Carlos
Batista, Pedro
Battistelli, Giorgio
Behal, A.
Belabbas, Mohamed Ali
Benosman, Mouhacine
Bianchini, Gianni
Boem, Francesca
Borhan, Ali
Bresch-Pietri, Delphine
Bribiesca Argomedo, Federico
Bridgeman, Leila Jasmine
Cai, Kai
Califano, Claudia
Canale, Massimo
Cao, Yongcan
Carron, Andrea
Cerpa, Eduardo
Chakrabortty, Aranya
Chatterjee, Debasish
Chen, Lijun
Chen, Michael Z. Q.
Chen, Tianshi
Chen, YangQuan
Cheng, Xu
Chu, Bing
Coogan, Samuel
Cosentino, Carlo
Costa, Eduardo F.
Cowlagi, Raghvendra V.
Cristofaro, Andrea
Dai, Ran
Dai, Ashwin P.
Davila, Jorge
De Tommasi, Gianmaria
Demetriou, Michael A.
Dimarogonas, Dimos V.
Ding, Zhengtao
Dong, Daoyi
Du, Haiping
Ebenbauer, Christian
Ebihara, Yoshio
El-Farra, Nael H.
Evangelou, Simos Andreas
Fang, Huazhen
Fardad, Makan
Faulwasser, Timm
Feng, Jun-e
Feng, Yu
Feng, Zhiguang
Ferrante, Francesco
Ferrari, Riccardo M.G.
Fiacchini, Mirko
Formentin, Simone
Fruolivi, Mario Luca
Freidovich, Leonid
Fridman, Leonid
Furtat, Igor
G. R., Jayanth
Gaggero, Mauro
Galeani, Sergio
Gao, Huijun
Garatti, Simone
Garcia, Germain
Garin, Federica
Gasparri, Andrea
Gilson, Marion
Giri, Fouad
Grammatico, Sergio
Granichin, Oleg
Gumussoy, Suat
Hatanaka, Takeshi
Heertjes, Marcel
Ho, Daniel W. C.
Hristu-Varsakelis, Dimitris
Hu, Guoqiang
Iannelli, Luigi
Incremona, Gian Paolo
Ito, Hiroshi
Jain, Rahul
Jayawardhana, Bayu
Julius, Agung
Jungers, Marc
Kan, Zhen
Karimi, Alireza
Karimoddini, Ali
Kashima, Kenji
Keel, Lee
Kia, Solmaz S.
Kishida, Masako
Koziolowski, Krzysztof R.
LAGHRROUCHE, Salah
Lam, James
Lavaei, Javad
Lee, Taeyoung
Leve, Frederick
Li, Fanbiao
Li, Na
Li, Zhongkui
Lin, Hai
Lin, Peng
Ling, Qiang
Liu, Jun
Liu, Shuai
Liu, Tengfei
Lucia, Walter
Macchelli, Alessandro
Madani, Ramtin
Malikopoulos, Andreas A.
Margellos, Kostas
Coordinated by Joao Hespanha in his capacities of CSS Vice-President for Technical Activities, the Control System Society Technical Committees (TC) organizes focused events around a selected technical area. Typical activities include organizing invited sessions for conferences, special issues in journals, technical meetings (workshops and conferences), maintaining web sites for technical resources, and publishing electronic newsletters that focus on various technical areas.

The current list of technical committees is shown below. For more information, please consult the TC web sites

and contact the TC Chairs directly for additional information. All technical committee meetings are open. It is our hope that you will find the collaborations and resources useful.

<table>
<thead>
<tr>
<th>Technical Committees</th>
<th>TC Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Controls</td>
<td>Hull, Richard A.</td>
</tr>
<tr>
<td>Automotive Controls</td>
<td>Siegel, Jason</td>
</tr>
<tr>
<td>Control Education</td>
<td>Rossiter, J. Anthony</td>
</tr>
<tr>
<td>Discrete Event Systems</td>
<td>Kai Cai</td>
</tr>
<tr>
<td>Distributed Parameter Systems</td>
<td>Le Gorrec, Yann</td>
</tr>
<tr>
<td>Health and Medical Systems</td>
<td>Medvedev, Alexander</td>
</tr>
<tr>
<td>Hybrid Systems</td>
<td>Sanfelice, Ricardo</td>
</tr>
<tr>
<td>Intelligent Control</td>
<td>Dixon, Warren</td>
</tr>
<tr>
<td>Manufacturing Automation and Robotic Control</td>
<td>Wang, Yue</td>
</tr>
<tr>
<td>Networks and Communication Systems</td>
<td>Como, Giacomo</td>
</tr>
<tr>
<td>Nonlinear Systems and Control</td>
<td>Ito, Hiroshi</td>
</tr>
<tr>
<td>Power Generation</td>
<td>Bentsman, Joseph</td>
</tr>
<tr>
<td>Process Control</td>
<td>Findeisen, Rolf</td>
</tr>
<tr>
<td>Robust and Complex Systems</td>
<td>Lagoa, Constantino</td>
</tr>
<tr>
<td>Smart Cities</td>
<td>Su, Rong</td>
</tr>
<tr>
<td>Smart Grids</td>
<td>Hiskens, Ian</td>
</tr>
<tr>
<td>Systems and Synthetic Biology</td>
<td>Waldherr, Steffen</td>
</tr>
<tr>
<td>Systems Identification and Adaptive Control</td>
<td>Mercere, Guillaume</td>
</tr>
<tr>
<td>Variable Structure and Sliding Mode Control</td>
<td>Edwards, Christopher</td>
</tr>
</tbody>
</table>
Abstract. Genetic circuits control every aspect of life and thus the ability to engineer them de-novo opens exciting possibilities, from revolutionary drugs and green energy, to bugs that recognize and kill cancer cells. The robustness of natural gene networks is the result of millions of years of evolution and is in contrast with the fragility of today’s engineered circuits. A genetic module’s input/output behavior changes in unpredictable ways upon inclusion into a larger system. Therefore, each component of a system is usually redesigned every time a new piece is added. Rather than relying on such ad-hoc design procedures, control theoretic approaches may be used to engineer “insulation” of circuit components from context, thus enabling modular composition through specified input/output connections. In this talk, I will give an overview of modularity failures in genetic circuits, focusing on problems of loads, and introduce a control-theoretic framework, founded on the concept of retroactivity, to address the insulation question. Within this framework, insulation can be mathematically formulated as a disturbance rejection problem; however, classical solutions are not directly applicable due to biophysical constraints. I will thus introduce solutions relying on time-scale separation, a key property of biomolecular systems, which we used to build two devices: the load driver and the resource decoupler. These devices aid modularity, facilitate predictable composition of genetic circuits, and show that control theoretic approaches may be suitable to address pressing challenges in engineering biology.

Biography. Domitilla Del Vecchio received the Ph. D. degree in Control and Dynamical Systems from the California Institute of Technology, Pasadena, and the Laurea degree in Electrical Engineering (Automation) from the University of Rome at Tor Vergata in 2005 and 1999, respectively. From 2006 to 2010, she was an Assistant Professor in the Department of Electrical Engineering and Computer Science and in the Center for Computational Medicine and Bioinformatics at the University of Michigan, Ann Arbor. In 2010, she joined Department of Mechanical Engineering at the Massachusetts Institute of Technology (MIT), where she is currently Professor and member of the Synthetic Biology Center. She is a recipient of the 2016 Bose Research Award (MIT), the Donald P. Eckman Award from the American Automatic Control Council (2010), the NSF Career Award (2007), the American Control Conference Best Student Paper Award (2004), and the Bank of Italy Fellowship (2000).
Abstract. The physical state of a robotic system naturally carries structure; the pose of rigid links can be written as elements of the Special Euclidean group, images taken by a camera of a planar scene can be related by homographies and mapped to elements of the special linear group, etc. Recent work has demonstrated that there is a rich collection of symmetry groups for different robotic problems above and beyond the classical Lie-groups. This talks shows how this structure can be exploited to design robust nonlinear observers for state estimation. The earliest results in this direction were nonlinear attitude estimators (2005-2010) that were an enabling technology in the aerial robotic vehicle industry. Pose estimation algorithms based on these ideas are built into the augmented reality headsets that are now ubiquitous in gaming. Recent symmetries have opened the door to new solutions for classical robotics problems such as visual odometry, visual inertial odometry, simultaneous localisation and mapping.

Biography. Robert Mahony is a Professor in the Research School of Engineering at the Australian National University. He received his BSc in 1989 (applied mathematics and geology) and his PhD in 1995 (systems engineering) both from the Australian National University. He is a fellow of the IEEE and was president of the Australian Robotics Association from 2008-2011. He was Director of the Research School of Engineering at the Australian National University 2014-2016. His research interests are in nonlinear systems theory with applications in robotics and computer vision. He is known for his work in aerial robotics, equivariant observer design, matrix subspace optimisation and image based visual servo control.
Abstract. The study of linear systems theory without exploiting linearity and time-invariance may pose challenges, yet it is highly rewarding. In truth, linearity and time-invariance, albeit powerful, are a curse: they are not conducive to an abstract understanding of concepts, tools and ideas and may often be misleading. On the other hand, notions such as manifold invariance, interconnection, coordinates transformations, decomposition, and the principle of optimality facilitate the enhancement of linear, time-invariant, systems theory methods and tools to far more general classes of systems. We illustrate this perspective by providing abstract and geometric definitions for eigenvalues, poles, moments, Loewner operators and derivative, and persistence of excitation; and by solving interpolation problems, adaptive and robust control problems, and optimal control and game theory problems, for general classes of nonlinear systems.

Biography. Alessandro Astolfi was born in Rome, Italy, in 1967. He graduated in electrical engineering from the University of Rome in 1991. In 1992 he joined ETH-Zurich where he obtained a M.Sc. in Information Theory in 1995 and the Ph.D. degree with Medal of Honor in 1995 with a thesis on discontinuous stabilisation of nonholonomic systems. In 1996 he was awarded a Ph.D. from the University of Rome "La Sapienza" for his work on nonlinear robust control. Since 1996 he has been with the Electrical and Electronic Engineering Department of Imperial College London, London (UK), where he is currently Professor of Nonlinear Control Theory and Head of the Control and Power Group. From 1998 to 2003 he was also an Associate Professor at the Dept. of Electronics and Information of the Politecnico of Milano. Since 2005 he has also been a Professor at Dipartimento di Ingegneria Civile e Ingegneria Informatica, University of Rome Tor Vergata. His research interests are focussed on mathematical control theory and control applications, with special emphasis for the problems of discontinuous stabilisation, robust and adaptive control, observer design and model reduction.
Abstract. The success of machine learning models is in part due to their capacity to train on large amounts of data. Distributed systems are the common way to process more data than one computer can store, but they can also be used to increase the pace at which models are trained by splitting the work among many computing nodes. In this talk, I will study the corresponding problem of minimizing a sum of functions which are respectively accessible by separate nodes in a network. New centralized and decentralized algorithms will be presented, together with their convergence guarantees in deterministic and stochastic convex settings, leading to optimal algorithms for this particular class of distributed optimization problems.

Biography. Francis Bach is a researcher at INRIA, leading since 2011 the SIERRA project-team, which is part of the Computer Science Department at Ecole Normale Supérieure, and a joint team between CNRS, ENS and INRIA. Since 2016, he is an adjunct Professor at Ecole Normale Supérieure. He completed his Ph.D. in Computer Science at U.C. Berkeley, working with Professor Michael Jordan, and spent two years in the Mathematical Morphology group at Ecole des Mines de Paris, he then joined the WILLOW project-team at INRIA/Ecole Normale Superieure/CNRS from 2007 to 2010. He obtained in 2009 a Starting Grant and in 2016 a Consolidator Grant from the European Research Council, and received the Inria young researcher prize in 2012, the ICML test-of-time award in 2014, as well as the Lagrange prize in continuous optimization in 2018. In 2015, he was program co-chair of the International Conference in Machine learning (ICML), and general chair in 2018; he is now co-editor-in-chief of the Journal of Machine Learning Research. Francis Bach is primarily interested in machine learning, and especially in graphical models, sparse methods, kernel-based learning, large-scale convex optimization, computer vision and signal processing.
Abstract. Feedback is a core concept of automatic control, a fundamental principle of systems and an indispensable mechanism in intelligent systems, which makes it possible for a dynamical system to perform well in the presence of various uncertainties. Although it is widely recognized that a comprehensive investigation of the quantitative relationship between feedback and uncertainty is a challenging task, considerable progress has been made in both theory and practice on the design and analysis of feedback systems. In this lecture, we will present some findings and theorems in the understanding of several basic problems. First, we will consider adaptive control of linear stochastic systems and explain the difficulties and techniques in establishing the global stability and optimality of the well-known self-tuning regulators (STR), designed by combining the least-squares estimator with the minimum variance controller. This natural and seemingly simple case had actually been a basic longstanding open problem in adaptive control, and its solution offers valuable insights necessary for more complicated problems. Next, we will discuss the theoretical foundation of the classical proportional-integral-derivative (PID) control, to understand the rationale behind its widespread successful applications in control practice where almost all of the systems are nonlinear with uncertainty, by presenting some theorems on the global (semi-global) stability and asymptotic optimality of the closed-loop systems, and by providing a concrete design method for the PID parameters. Finally, we will consider more fundamental problems on the maximum capability and limitations of the feedback mechanism in dealing with uncertain nonlinear systems, where the feedback mechanism is defined as the class of all possible feedback laws (which are not restricted to a certain particular subclass). We will present some “critical values” and “impossibility theorems” about the maximum capability of the feedback mechanism for several basic classes of uncertain nonlinear systems. Experiences, extensions and expectations will also be shared during the lecture.

Biography. Lei Guo received his B.S. degree in mathematics from Shandong University in 1982, and Ph.D. degree in control theory from the Chinese Academy of Sciences in 1987. He was a postdoctoral fellow at the Australian National University (1987-1989). Since 1992, he has been a Professor of the Institute of Systems Science at the Chinese Academy of Sciences (CAS). From 2002 to 2012, he was the President of the Academy of Mathematics and Systems Science, CAS. He is currently the Director of the National Center for Mathematics and Interdisciplinary Sciences, CAS. He has worked on problems in adaptive control, system identification, adaptive signal processing, and stochastic systems. His current research interests include control of nonlinear uncertain systems, PID control theory, distributed filtering and estimation, capability of feedback, multi-agent systems, game-based control systems, and complex systems, among others.
Special Sessions

There will be five special sessions at the conference on the following topics:

- NASK Special Session
- MERL Special Session
- Meet the Faculty Candidates Poster Session
- ERC Session: ERC Funding Opportunities
- MathWorks Special Session

Title: NASK Special Session: Secure and efficient with adaptive control - a story of one equation that brought new perspectives for Linux servers and cybersecurity systems
Speaker: Michał Karpowicz (National Research Institute for Cybersecurity & AI)
Time and Location: Wednesday, December 11, 12:15 – 1:15 pm, Galliéni 5

Abstract: As a National Research Institute executing governmental cybersecurity tasks on one hand and providing commercial IT services on the other, NASK is in constant need of technological solutions that prove to be both secure and efficient. Rapidly changing patterns of cyberattacks and ever-growing demand for computing capacity result in excessive costs of network services. Therefore, we are focused on developing solutions for cybersecurity and energy-efficient data center management.

Our recent findings show that challenges arising in these areas call for the application of adaptive control theory. And it all started with one equation...

Michał Karpowicz is assistant Professor of Computer Science and Head of IT Systems Engineering Department at NASK National Research Institute for Cybersecurity & AI. He received his B.S., M.S., and Ph.D. from the Institute of Control and Computation Engineering at the Warsaw University of Technology. His research interests include control theory, signal processing, and game theory.

Title: MERL Special Session: An overview of research activities at MERL (Mitsubishi Electric Research Laboratories), Control and Dynamical Systems Group
Speakers: Karl Berntorp (MERL), Uroš Kalabić (MERL), Rien Quirynen (MERL)
Time and Location: Wednesday, December 11, 12:15-1:30 pm, Risso 8

Abstract: Mitsubishi Electric Research Laboratories (MERL) is a leading research organization located in Cambridge, Massachusetts, USA that conducts fundamental research for industrially-motivated problems. In this talk, we will present an overview of research activities at MERL, including fundamental controls research and the application of state-of-the-art control techniques to a variety of products. We will focus on fundamental research topics including model predictive control and the control of constrained systems, estimation and motion planning for autonomous systems, and learning for control.

In addition, we will describe how these fundamental research areas have impacted applications such as autonomous vehicles, energy-efficient HVAC systems, high-precision manufacturing, traffic control, and spacecraft guidance and control.

Karl’s Berntorp research is on statistical signal processing, motion planning, sensor fusion, and optimization-based control, with applications to automotive, aerospace, transportation, and
communication systems. His work includes design and implementation of nonlinear estimation, constrained control, and motion-planning algorithms.

Uroš Kalabić works on advancements in the theory of predictive control and constrained control, as well as its applications to the control of automotive and aerospace systems. His dissertation dealt with theoretical developments and practical applications of reference governors. Prior to joining MERL, Uroš interned at MERL and at Ford Motor Company.

Rien’s Quirynen research interests are in model predictive control and moving horizon estimation, numerical algorithms for (nonlinear) dynamic optimization and real-time control applications. His doctoral research was focused on numerical simulation methods with efficient sensitivity propagation for real-time optimal control algorithms.

Title: Meet the Faculty Candidates Poster Session
Organizer and moderator: Antoine Chaillet (Centrale Supelec)
Time and Location: Wednesday, December 11, 6:30-8:30 pm, Rhodes Exhibition Area

Abstract: Building on the success of the past several events, the 2019 CDC will feature the "Meet the Faculty Candidates" poster session. This poster session provides a great opportunity for faculty, search committee members, and recruiters to speak directly with current graduate students and postdoctoral researchers who are seeking faculty positions. The session will be held on Wednesday, December 11th, from 6:30pm to 8:30pm at the Acropolis Convention and Exhibition Center. Space will be available on a first-come first-serve basis. Presenters are asked to bring a poster no larger than 3ft x 4ft (A0 format) along with pushpins to attach the poster. Presenters will likely be more successful providing high-level discussions of their work such as motivation, strategies, unique insights, rather than narrow mathematical detailed discussions, unless asked specifically for those details. Presenters are also encouraged to bring copies of their CV for distribution.

Title: ERC Session: ERC Funding Opportunities
Speakers: Marios Polycarpou (University of Cyprus), Sandra Hirche (TUM Munich, Germany), Telma Carvalho (ERC Executive Agency)
Time and Location: Thursday, December 12, 12:15 – 1:15 pm, Galliéni 5

Abstract: ERC grants support individual researchers of any nationality and age who wish to pursue frontier research in any field of science. The ERC encourages in particular proposals that cross the disciplinary boundaries, pioneer ideas that address new and emerging fields and applications that introduce unconventional and/or innovative approaches. The ERC Session presents the current funding opportunities and discusses the evaluation and submission process from the perspective of a grantee and panel member. In particular, grantee experiences on writing an ERC proposal and implementing the ERC project will be shared. Furthermore, a panel member will report the experiences on common mistakes and faults in the proposal and the interview.
Title: MathWorks Special Session
Speaker: Craig Buhr (MathWorks)
Time and Location: Thursday, December 12, 12:15-1:45 pm, Hermès

Abstract: Reinforcement learning is getting a lot of attention lately. People are excited about its potential to solve complex problems in areas such as robotics and automated driving, where traditional control methods can be challenging to use. In addition to deep neural nets to represent the policy, and algorithms to train them, reinforcement learning requires repeated exploration of the environment. As such exploration is time consuming and potentially dangerous when done with the hardware, a simulation model is often used to represent the environment, at least for the initial training.

In this talk, we will discuss reinforcement learning and contrast it with traditional control methods. We will go through the steps needed to set up and solve a reinforcement learning problem. We will then talk about relevant MathWorks capabilities and resources and will show an example of developing a robot controller using reinforcement learning. Topics include:

- Creating MATLAB and Simulink environment models and provide observation and reward signals for training policies
- Training of policies using various reinforcement learning algorithms
- Parameterizing policy and value functions using deep neural networks, linear basis functions, and look-up tables
- Parallelizing environment simulations and gradient calculations on GPUs and multicore CPUs for policy training
- Deploying trained policies to embedded devices through automatic code generation for CPUs and GPUs
- Implementing controllers using reinforcement learning for automated driving and robotics applications.
Tutorial Sessions

There will be four tutorial sessions at the conference on the following topics:

- **Cybergenetics: Control of Living Cells**
- **Self-Tuning and Reinforcement Learning**
- **Autonomous Vehicles and Traffic Control in Mixed Autonomy Environments**
- **Payoff Dynamics and Higher-Order Learning in Population Games**

Title: Cybergenetics: Control of Living Cells
Organizers: Mustafa Khammash (ETH Zurich), Mario Di Bernardo (University of Naples Federico II), Diego Di Bernardo (Telethon Institute of Genetics and Medicine)
Speakers: Mustafa Khammash (ETH Zurich), Diego Di Bernardo (Telethon Institute of Genetics and Medicine), Mario Di Bernardo (University of Naples Federico II), Filippo Menolascina (University of Edinburgh)
Time and Location: Wednesday, December 11, 10:00-12:00, Apollon
Abstract: This tutorial session presents an overview of the theory and design tools for the real-time control of living cells. The theoretical, computational, and experimental tools and technologies utilized for achieving such control make up a new and exciting area of study at the interface between control theory and synthetic biology—one we refer to as Cybergenetics. The session is intended to introduce control scientists and engineers to the different ways living cells can be controlled, and to the many opportunities for future developments, both theoretical and practical, that such control brings about.

Title: Self-Tuning and Reinforcement Learning
Organizers: Nikolai Matni (University of Pennsylvania) and Anders Rantzer (Lund University)
Speakers: Anders Rantzer (Lund University), Nikolai Matni (University of Pennsylvania), Alexandre Proutiere (KTH Royal Institute of Technology), Stephen Tu (University of California, Berkeley)
Time and Location: Thursday, December 12, 10:00-12:00, Apollon
Abstract: Machine and reinforcement learning are increasingly being applied to plan and control the behavior of autonomous systems interacting with the physical world. Examples include self-driving vehicles, distributed sensor networks, and agile robots. However, when machine learning is to be applied in these new settings, the algorithms had better come with the same type of reliability, robustness, and safety bounds that are hallmarks of control theory, or failures could be catastrophic. Thus, as learning algorithms are increasingly and more aggressively deployed in safety critical settings, it is imperative that control theorists join the conversation. The goal of this tutorial session is to provide a starting point for control theorists wishing to work on learning related problems, by covering recent advances bridging learning and control theory, and by placing these results within an appropriate historical context of system identification and adaptive control.
Title: Autonomous Vehicles and Traffic Control in Mixed Autonomy Environments
Organizers: Maria Laura Delle Monache (Inria Grenoble Rhône – Alpes), Jonathan Sprinkle (University of Arizona), Ramanarayan Vasudevan (University of Michigan), Daniel B. Work (Vanderbilt University)
Speakers: Daniel B. Work (Vanderbilt University), Ramanarayan Vasudevan (University of Michigan), Jonathan Sprinkle (University of Arizona), Maria Laura Delle Monache (Inria Grenoble Rhône – Alpes)
Time and Location: Thursday, December 12, 16:30-18:30, Apollon

Abstract: This tutorial session provides an overview of the converging areas of control for autonomous vehicles, and control of the larger transportation system in which a small number of autonomous vehicles serve as actuators of traffic flow. The overview begins by describing the verification techniques and realistic sensor and control interfaces for safe real-time control of autonomous vehicles. Shifting towards a period when autonomous vehicles are present in large numbers, the session reviews classical traffic modeling, estimation, and control techniques, and then considers new methods available to model and use these autonomous vehicles to actuate bulk traffic flow composed primarily of human-piloted vehicles.

Title: Payoff Dynamics and Higher-Order Learning in Population Games
Organizers: Shinkyu Park (Princeton University), Nuno C. Martins (University of Maryland), Jeff S. Shamma (KAUST)
Speakers: Jeff S. Shamma (KAUST), Nuno C. Martins (University of Maryland), Shinkyu Park (Princeton University)
Time and Location: Friday, December 13, 10:00-12:00, Apollon

Abstract: Population games model the strategic interactions among vast numbers of decision-making agents. In this context, the evolutionary dynamics of a population describes how the proportions of agents adopting each available strategy evolve in response to the payoff (or fitness) ascribed to each strategy by the game. This session begins with a review of the basic tenets of population games and evolutionary dynamics. Subsequently, it overviews recent methods that hinge on passivity-based techniques to characterize the stability of the evolutionary dynamics when a dynamical system (more general than a population game or a dynamically modified version thereof) governs the payoff.
Pre-Conference Workshops

The CDC 2019 is offering 11 full-day and 3 half-day pre-conference workshops on Tuesday, December 10, 2019. The workshops address topics of current and future interest in control theory and applications, and are delivered by renowned experts from academia, research institutions, and industry.

Half-day Workshops (8:30 am - 12:30 pm, except Half-Day Workshop no. 3: 1:00 - 5:30 pm)

1. Uncertainty Synthesis
2. Learning, Decision and Control over Networks
3. Computational Optimal Transport for Applications in Control and Estimation

Workshop Title: Uncertainty Synthesis
Organizers and Speakers: Efstathios Bakolas (Univ. of Texas at Austin), Yongxin Chen (Georgia Institute of Technology), Tryphon Georgiou (Univ. of California, Irvine), and Panagiotis Tsiotras (Georgia Institute of Technology)
Time and Location: 8:30 am - 12:30 pm, Galliéni 6

Abstract: All dynamical systems are prone to exogenous disturbances, and the uncertainty introduced by these exogenous disturbances propagates along with the system states. More often, the amount of uncertainty in the system grows with time as the system evolves and, consequently, controlling the uncertainty is of paramount interest to maintain a certain level of performance. This is especially true when one needs to design optimal controllers, which are known to be susceptible to modelling errors. Recent advances have it possible to directly quantify and control the uncertainty of a dynamical system. Controlling the uncertainty of a dynamical system implies the ability to control the state distribution over time, a problem that has many applications, including image segmentation, ensemble and swarm control, control of particle beams, neuronal ensembles, and many others — in addition to just reducing the uncertainty in a feedback system. The objective of this workshop is twofold: the first objective is to report on current advances in the area of uncertainty quantification and control to enable resilient and robust operation of dynamical systems and swarms of robots; the second objective is to bring together - in the same room - outstanding researchers from leading institutions who have contributed on this topic over the years. Please see http://uncertainty-synthesis-workshop.ae.gatech.edu/ for additional information.

Workshop Title: Learning, Decision and Control over Networks
Organizers: Vaibhav Srivastava (Michigan State University) and Fabio Pasqualetti (Univ. of California, Riverside)
Additional Speakers: Jorge Cortes (Univ. of California at San Diego), Sonia Martinez (Univ. of California at San Diego), Giuseppe Notarstefano (Univ. of Bologna), Ketan Savla (Univ. of Southern California), Stephen L. Smith (Univ. of Waterloo), and Shaunak D. Bopardikar (Michigan State University)
Time and Location: 8:30 am - 12:30 pm, Méditerranée A3

Abstract: From electric power grid to biological systems to massive transportation systems, socio-technological networked multi-agents systems are ubiquitous across scientific disciplines. In the era of big data, understanding the interplay of learning, decision-making, and control in distributed control of such network systems in vital. Such understanding will empower the future technology to leverage the plethora of data in a systematic and efficient fashion. To this end, a half day workshop is organized that will bring together experts in this area to present the state-of-the-art and discuss future research directions. Space permitting, the workshop will also feature an interactive poster session to facilitate
deeper discussions on the topics. This half-day workshop will feature presentations and discussions from experts in the areas of networked multiagent systems. Please see https://www.egr.msu.edu/~vaibhav/cdc2019workshop.html for more information.

Workshop Title: Computational Optimal Transport for Applications in Control and Estimation
Organizers and Speakers: Yongxin Chen (Georgia Institute of Technology), Tryphon Georgiou (Univ. of California, Irvine), Johan Karlsson (KTH Royal Institute of Technology), Axel Ringh (Hong Kong University of Science and Technology), and François-Xavier Vialard (University Paris-Est Marne la Vallée)
Time and Location: 1:00 pm - 5:30 pm, Méditerranée A3

Abstract: The optimal mass transport problem is a classical problem in mathematics, and dates back to 1781 and work by Gaspard Monge where he formulated an optimization problem for minimizing the cost of transporting soil for construction of forts and roads. Historically the optimal mass transport problem has been widely used in economics in, e.g., planning and logistics, and was at the heart of the 1975 Nobel Memorial Prize in Economic Sciences. In the last two decades there has been a rapid development of theory and methods for optimal mass transport and the ideas have attracted considerable attention in several economic and engineering fields. These developments have lead to a mature framework for optimal mass transport with computationally efficient algorithms that can be used to address problems in the areas of systems, control, and estimation. This workshop is being organized in order to introduce optimal transport to a larger audience in the CDC community. The main goal of this workshop is to give a tutorial of it, regarding both theoretical and computational aspects, and to present some applications in the areas of control and estimation. Please see https://people.kth.se/~johan79/Workshops/OMT_CDC_2019/ for more information.

Full-day Workshops (8:30 am - 5:30 pm)

1. **Verifiable Adaptive Control Systems and Learning Algorithms**
2. **Mathematical Theory of Control and Signal Processing in the Digital World: A workshop dedicated to Yutaka Yamamoto's 70th birthday**
3. **Model Predictive Control: From the Basics to Reinforcement Learning**
4. **Learning, Games and Control for Security of Cyber-physical Systems**
5. **Resilience and Controllability of Large Scale Systems: A Network-theoretic Approach**
6. **Spatio-Temporal Reasoning for Control of Cyber-Physical Systems**
7. **Neuroscience and Control: the Emerging Intersection**
8. **Model Predictive Control of Hybrid Dynamical Systems**
9. **Lagrangian Control for Traffic Flow Smoothing in Mixed Autonomy Settings**
10. **Finite-, Fixed-, and Prescribed-Time Stabilization and Estimation**
11. **Systems and Control for Smart Society and Cyber-Physical and Human Systems**

Workshop Title: Verifiable Adaptive Control Systems and Learning Algorithms
Organizers and Speakers: Tansel Yucelen (Univ. of South Florida), Anuradha Annaswamy (Massachusetts Institute of Technology), Warren Dixon (Univ. of Florida), K. Merve Dogan (Univ. of South Florida), Jonathan A. Muse (Air Force Research Lab), and Frank Lewis (Univ. of Texas at Arlington)
Time and Location: 8:30 am - 5:30 pm, Galliéni 4
Abstract: A fundamental problem in the design of feedback control architectures is to achieve closed-loop system stability, performance, and robustness against exogenous disturbances and system uncertainties. Unlike fixed-gain control architectures, adaptive control systems offer the capability to deal with exogenous disturbances and system uncertainties, in an online fashion, through learning. This implies that they are not tuned to a worst-case scenario and they continuously improve their performance in real-time. These two appealing aspects make adaptive control systems and learning algorithms important candidates for a wide array of physical systems. Although government and industry agree on their potential in providing vehicle safety and reducing vehicle development costs, a major issue is the lack of system-theoretic methods for their verification, due to their nonlinear nature. Motivated by this standpoint, the objective of this full-day workshop is to cover the state-of-the-art verifiable system-theoretic approaches in adaptive control systems and learning algorithms for their safe and reliable real-world applications. Specifically, the presenters of this workshop will cover topics addressing how to implement adaptive control systems with verifiable transient and steady-state performance guarantees, how to address the presence of actuator and unmodeled dynamics when adaptive control systems are in feedback loops, how to design and analyze adaptive control systems for physical plants with switching modes, and how to advance adaptive control systems with system-theoretic guarantees using tools and methods from machine and reinforcement learning. This workshop will be relevant to practicing professionals from electrical, mechanical, and aerospace industries. It also intends to cultivate new future research directions under a panel discussion involving organizers and expected workshop attendees. Finally, this workshop is expected to be a great value to experts and students in the adaptive control systems and learning algorithms fields. Please see http://lacis.eng.usf.edu/page6/index.html for additional information.

Workshop Title: Mathematical Theory of Control and Signal Processing in the Digital World: A workshop dedicated to Yutaka Yamamoto’s 70th birthday
Organizers: Masaaki Nagahara (The Univ. of Kitakyushu), Hideaki Ishii (Tokyo Institute of Technology), Kenji Kashima (Kyoto University), Kenji Sugimoto (Nara Institute of Science and Technology)
Additional Speakers: Please see http://www.sc.dis.titech.ac.jp/yy_workshop_cdc19/
Time and Location: 8:30 am - 5:30 pm, Méditerranée A1

Abstract: This workshop is organized to celebrate Professor Yutaka Yamamoto’s 70th birthday and honor his long-lasting contributions to mathematical theory of control and signal processing. This workshop will bring together his colleagues who will present a broad range of topics related to control and signal processing for the digital world. In particular, the speakers will present talks on robust control, stochastic systems, signal processing, and system identification. The goal of this workshop is to inspire a future generation of researchers. Please see http://www.sc.dis.titech.ac.jp/yy_workshop_cdc19/ for additional information.

Workshop Title: Model Predictive Control: From the Basics to Reinforcement Learning
Organizers and Speakers: Alberto Bemporad (IMT Lucca) and Mario Zanon (IMT Lucca)
Time and Location: 8:30 am - 5:30 pm, Galliéni 7

Abstract: In spite of its long tradition of success as a very powerful and versatile advanced control technique, the interest of industry and academia in model predictive control (MPC) is strongly growing, and MPC is spreading to a large variety of application domains. While most of the attention has been focused so far on computational efficiency and closed-loop performance, as the use of MPC in industrial production is increasing the time required to develop an MPC solution has also become of strong importance. Development time is mainly due to constructing suitable prediction models and to
calibrating the resulting controller. Reinforcement learning, and more generally data-driven synthesis of MPC laws, has recently attracted a lot of attention to possibly reduce such development time. This workshop aims at providing an overview of several techniques for practical use of MPC, covering linear, hybrid, and nonlinear MPC formulations and various computational methods that can be used to effectively compute the MPC action in real-time. The workshop also aims at bringing the attendees towards understanding emerging reinforcement learning and policy search methods for tuning MPC controllers directly from data for reduced design and calibration effort. Emphasis will be given to understanding the necessary theoretical background that leads to the successful implementation of MPC in practice, addressing advantages and potential difficulties. During the workshop pointers towards dedicated software will be given, so that the attendees will be able to not only properly formulate the problem, but also to solve it using state-of-the-art tools. The workshop is organized as a tour, starting from the most basic and standard formulations based on deterministic linear systems with quadratic costs, and following the road towards more advanced formulations, including hybrid, stochastic, nonlinear, and economic MPC. The last part of the workshop will be dedicated to presenting promising results in data-driven learning of control laws that have a great potential of use in MPC, with the intention of also triggering further research ideas in the audience. A few practical case studies will be described so as to also motivate the practical and industry-oriented flavor of the workshop. Please see http://dysco.imtlucca.it/mpc-cdc19 for additional information.

Workshop Title: Learning, Games and Control for Security of Cyber-physical Systems
Organizers: Quanyan Zhu (New York University) and Radha Poovendran (University of Washington)
Additional Speakers: Tamer Basar (UIUC), Joao Hespanha (UCSB), Linda Bushnell (Univ. of Washington), Hideaki Ishii (Tokyo Institute of Technology), Karl Johannsson (KTH), and others.
Time and Location: 8:30 am - 5:30 pm, Méditerranée 1

Abstract: The topic of this workshop is the control and secure operation of cyber-physical systems (CPSs) using perspectives from game theory and machine learning. Cyber-physical systems are complex entities where the working of a physical system is governed by its interactions with computing devices and algorithms. These systems are ubiquitous. Examples range from medical devices and robots on a small scale, to power systems and connected communities on a large scale. CPSs are expected to operate in dynamically changing environments, which could result in them being the target of malicious attacks that aim to prevent them from accomplishing a goal. Strategies to mitigate the effect of an attack must take into consideration the fact that adversaries are often stealthy, intelligent, and persistent. This workshop will feature talks by leading experts whose recent work uses game theory and data-driven approaches to model and analyze the security of CPSs. The workshop also plans to feature a presentation by a representative from a funding agency, and a panel discussion in order to identify open research problems that will be of interest to the broader community. Please see https://wp.nyu.edu/quanyan/cdc-2019-workshop/ for additional information.

Workshop Title: Resilience and Controllability of Large Scale Systems: A Network-theoretic Approach
Organizers: Mohammad Pirani (Univ. of Toronto), Shreyas Sundaram (Purdue University), and Victor Preciado (Univ. of Pennsylvania)
Additional Speakers: Sonia Martinez (Univ. of California, San Diego), Nader Motee (Lehigh University), Stacy Patterson (Rensselaer Polytechnic Institute), Sergio Pequito (Rensselaer Polytechnic Institute), Iman Shames (Univ. of Melbourne), Shreyas Sundaram (Purdue University), Joshua Taylor (Univ. of Toronto), and Daniel Zelazo (Technion-Israel Institute of Technology)
Time and Location: 8:30 am - 5:30 pm, Méditerranée 2
Abstract: Large-scale systems play a central role in a multitude of applications, from power grids and smart buildings to aerospace systems, swarm robotics, social networks, and intelligent transportation systems. As the scale of networked control systems increases and interactions between different subsystems become more sophisticated, questions of controllability, observability, and resilience of such networks increase in importance. The need to redefine classical system and control theoretic notions into the language of networks has recently started to gain attention as a fertile and important area of research. A key challenge for the controls community is thus to understand how to leverage network theory along with systems and control to analyze the controllability, observability, and resilience of large-scale interconnected systems. The IEEE Conference on Decision and Control, as one of the premier annual gatherings of researchers in the field of systems and control, is a perfect venue for a workshop on network-theoretic approaches to controlling large scale systems. The goal of this workshop is to present the challenges in this area, together with tools and approaches that have been recently developed to address this problem. In particular, the key emphasis of this workshop will be on the use of graph-theoretic approaches to large-scale systems analysis, which will differentiate it from other workshops on control and security of centralized systems. The target audience is students, researchers and practitioners from academia and industry who are interested in learning about (and contributing to) the emerging field of network control systems. The workshop will be highly interactive and will feature tutorial-style talks by leading experts in the field, giving the audience a perspective of how network theory plays a role in the resilience and control of large scale systems, and how to best combine different perspectives to develop efficient, reliable and resilient systems. Please see https://cdc2019.ieeecss.org/workshops.php#w2430 for additional information.

Workshop Title: Spatio-Temporal Reasoning for Control of Cyber-Physical Systems
Organizers: André de Matos Pedro and Laura Nenzi
Additional Speakers: Calin Belta (Boston University), Michel Loreti (Univ. of Camerino), Ezio Bartocci (TU Wien), Jane Hillston (Univ. of Edinburgh), Roman Kontchakov (Univ. of London), Jana Tumova (KTH Royal Institute of Technology), Necmiye Ozay (Univ. of Michigan), Christos Tsigkanos (TU Wien), and Martin Leucker (Univ. of Lübeck)
Time and Location: 8:30 am - 5:30 pm, Méditerranée C4
Abstract: This workshop aims to present the most recent advances in the development of logic-based procedures for the analysis and control of spatially distributed Cyber Physical Systems (CPS), with particular emphasis on the combination of temporal and spatial behaviors. Spatially distributed CPS, such as robotic swarms and smart environments, often exhibit multiple and unpredictable behaviors that increase the efforts needed in their analysis. Studying and controlling such systems requires a growing demand for efficient tools capable of dealing with such complex behavioral patterns. Spatio-temporal logic is an innovative way to reason and face such challenges. This workshop has the dual objective: (1) showing the usefulness of spatio-temporal logic to the control community in the context of spatially distributed CPS and (2) highlighting what are the main important challenges in the analysis of such systems that logic community can help to solve in the near future. Several case studies will be considered to discuss the real usefulness of these methodologies. This will lay the foundations for a verification framework of spatially distributed CPS as well as fill the gap between theory and practice of CPS design, deployment and testing, with particular emphasis in the decision procedures and monitoring mechanisms. Please see http://strcc.isp.uni-luebeck.de for additional information.
Workshop Title: Neuroscience and Control: the Emerging Intersection
Organizers: Sergio Pequito (Rensselaer Polytechnic Institute) and Alexander Medvedev (Uppsala University)
Additional Speakers: Erfan Nozari (Univ. of California, San Diego), John Doyle (CalTech), Arian Ashourvan (Univ. of Pennsylvania), Tim Denison (Oxford University), and Miroslav Pajic (Duke University).
Time and Location: 8:30 am - 5:30 pm, Méditerranée A2

Abstract: The last years have witnessed a fast development of models, tools, and experiments aimed at understanding neural circuitry and brain dynamics. This workshop brings together researchers from different backgrounds to demonstrate how the theory of dynamical systems and control engineering successfully enable new insights into neuroscience and emerging neural technology. More specifically, the scope of the talks covers such topics as mathematical modeling and analysis of neural populations, intracranial electrical stimulation in rehabilitation technology and prosthetics, brain-machine interfaces, and uncovering the drivers of brain activity. We propose to not only present and address some of the fundamental problems in this research area but also to raise more questions for future research within the controls community. Subsequently, we believe that these sessions will have a profound effect on our understanding of brain dynamics and actuation mechanism. A healthy mixture of theoretically oriented talks with more applied ones will take place, thus maximizing the relevant audience, and attracting new researchers in these exciting problems, creating a larger yet focused community. Please see https://sites.google.com/site/neurocontrolcdc19/home for additional information.

Workshop Title: Model Predictive Control of Hybrid Dynamical Systems
Organizers: Berk Altın (Univ. of California, Santa Cruz) and Ricardo G. Sanfelice (Univ. of California, Santa Cruz)
Additional Speakers: Francesco Ferrante (Univ. Grenoble Alpes), Mohamed A. Maghenem (Univ. of California, Santa Cruz), and Sean Phillips (Air Force Research Laboratory)
Time and Location: 8:30 am - 5:30 pm, Galliéni 1

Abstract: Hybrid systems model the behavior of dynamical systems where the states can evolve continuously as well as instantaneously. Such systems arise when control algorithms that involve digital devices are applied to continuous-time systems, or due to the intrinsic dynamics (e.g. mechanical systems with impacts, switching electrical circuits). Hybrid control may be used for improved performance and robustness properties compared to conventional control, and hybrid dynamics may be unavoidable due to the interplay between digital and analog components of a system. This workshop is a complete course on the analysis and design of model predictive control (MPC) schemes for hybrid systems. It presents recently developed results on asymptotically stabilizing MPC for hybrid systems based on control Lyapunov functions. The workshop provides a detailed overview of the state of the art on hybrid MPC, and a short tutorial on a powerful hybrid systems framework (hybrid inclusions) that can model hybrid dynamics described in other frameworks (e.g. switched systems, hybrid automata, impulsive systems). Key analysis tools in this setting are demonstrated, along with several advantages over other frameworks. This background is then used to lay the theoretical foundations of a general MPC framework for hybrid systems, with guaranteed stability and feasibility. The ideas are illustrated in several applications. The workshop targets a broad audience in academia and industry, including graduate students, looking for an introduction to an active area of research and some modern mathematical analysis tools; control practitioners interested in novel design techniques; researchers in dynamical systems in pursuit of relevant applications; and researchers in industry and labs applying hybrid predictive control methods to engineering systems. The required background is basic familiarity
with continuous- and discrete-time nonlinear systems. The lectures are closely related to each other and not meant to be independent research presentations. Please see https://hybrid.soe.ucsc.edu/hybridmpccdc19 for additional information.

Workshop Title: Lagrangian Control for Traffic Flow Smoothing in Mixed Autonomy Settings
Organizers: Alexandre Bayen (UC Berkeley), George J. Pappas (Univ. of Pennsylvania), Benedetto Piccoli (Rutgers University), Daniel B. Work (Vanderbilt University), Jonathan Sprinkle (University of Arizona), Maria Laura Delle Monache (INRIA), Benjamin Seibold (Temple University), Cathy Wu (MIT), Abdul Rahman Kreidieh (UC Berkeley), Eugene Vinitsky (UC Berkeley), Yashar Farid (UC Berkeley)
Time and Location: 8:30 am - 5:30 pm, Galliéni 2

Abstract: The field of transportation is undergoing profound and rapid disruptions, led in part by revolutions in automation, electrification, and data science / machine learning. In particular, the rapid emergence of autonomous vehicle (AV) technology and its potential as a means of Lagrangian control has led many to ask the question: How can AVs in the presence of human-driven vehicles improve the flow of traffic? In order to shed some light on this topic, this workshop discusses the mathematical, engineering, and technological advances in a group of fields that are steadily enabling vehicle automation as a viable means of traffic flow control:

1. **Means Field Models and Traffic Aggregation:** The complexity of the traffic flow dynamics (e.g. multi-lane dynamics, merges, ramps, non-FIFO assumptions) necessitates the use of abstraction models to overcome the complexity of the dynamics of single agents (vehicles), which make full analytical approaches nearly intractable. We present advances in systematic approaches to aggregate (human-driven) traffic flow actuated by Lagrangian controllers (AVs), via mean field equations and coupled PDE-ODE systems.

2. **Deep Reinforcement Learning (RL):** Recent years have seen RL emerge as a promising framework for control of complex dynamical systems. This is particularly appealing in the context of traffic, which itself exhibits the rich, complex behaviors. We present techniques for applying scalable RL techniques to mixed-autonomy traffic. This includes topics such as decentralization, and methods for generating policies that are transferable to actual networks.

3. **Verification of Deep Neural Networks (DNNs):** The rise of deep RL as a means of control has been treated with some skepticism, attributed in part to the black-box nature of DNNs. In a setting where humans and actuated devices are expected to interact with one another, this serves as a significant barrier to deployment. In response to this, we present techniques for verifying the safety properties of DNNs using algorithms for satisfiability modulo convex optimization.

Please see https://flow-project.github.io/tutorial.html#cdc2019 for additional information.

Workshop Title: Finite-, Fixed-, and Prescribed-Time Stabilization and Estimation
Organizers: Denis Efimov (INRIA), Miroslav Krstic (UC San Diego), Wilfrid Perruquetti (Centrale Lille), Andrey Polyakov (INRIA), and Drew Steeves (UC San Diego)
Time and Location: 8:30 am - 5:30 pm, Galliéni 3

Abstract: The goal of this workshop is to present recent advances in the design and analysis of control and estimation algorithms with accelerated convergence rates. The focus is to exhibit algorithms which ensure finite-, fixed- or prescribed-time convergence. The associated approaches and related properties that will be covered include: homogeneity, the implicit Lyapunov function method, time-varying
damping, and discretization tools for highly nonlinear systems. Recent interest in these more demanding types of stability is due to emerging applications (e.g., flying robots, cyber-physical systems) which have strict performance requirements regarding convergence rate, robustness and scalability. Conventional control and estimation methods fail to meet these demands. As such, the aforementioned approaches have been developed or extended to meet these strict targets and will be at the forefront of this workshop. Please see https://team.inria.fr/valse/fr/full-day-workshop-finite-fixed-prescribed-time-stabilization-and-estimation-ieee-cdc-2019/ for additional information.

Workshop Title: Systems and Control for Smart Society and Cyber-Physical and Human Systems
Organizers: Toru Namerikawa (Keio University), Masaaki Nagahara (The University of Kitakyushu), Takeshi Hatanaka (Osaka University)
Additional Speakers: Pramod Khargonekar (UC Irvine), Anuradha Annaswamy (MIT), Rong Su (Nanyang Technological University), Dario Bauso (Univ. of Groningen), and Scott J. Moura (UC Berkeley)
Time and Location: 8:30 am - 5:30 pm, Méditerranée 5

Abstract: Many nations are promoting projects to realize smart society through tight intertwining between cyber and real-physical components. To this end, the framework of Cyber-Physical Systems (CPS) has successfully enabled multidisciplinary research that involves control systems, communications, networking, sensing and computing to develop new theoretical foundations/tools as well as major technological applications, including transportation, aerospace, health and medicine, robotics, manufacturing, energy management, and environment and sustainability. Construction of smart society requires not only to design these individual smart systems but also to coordinate these systems in a stable, optimal, and economically enabled fashion. A goal of this workshop is to discuss how the global perspective inherent in systems and control could contribute to designing such smart systems. Another main issue of this workshop is how to design Cyber-Physical & Human Systems (CPHS). In smart society, human factors must be naturally involved in the overall system and they must interact with the CPS in various ways at various levels. It is thus evident that the ultimate societal outcomes of future CPHS technologies will depend crucially on deeper understanding of the interactions between cyber-physical systems and humans, and on how to integrate the human factors and their models into the CPS design in order to bring the best outcomes for individuals, organizations, and the society. Revolutionary advances in data science, machine learning, and artificial intelligence technology have opened up new possibilities of rigorously analyzing/modeling humans, not necessarily obeying any physical law, under interaction with CPS. We believe that now is an opportune time to discuss how to best consider human factors in the control loop. This workshop presents state-of-the-art research outcomes on CPHS in some key application fields including intelligent transportation, aerospace systems and robotics. Please see http://is.eei.eng.osaka-u.ac.jp/hatanaka/CDC/index.php for additional information.
Social Program

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome Reception:</td>
<td>Tuesday, December 10th</td>
<td>6:30-8:30 pm</td>
<td>Agora 3</td>
</tr>
<tr>
<td>Women in Control Luncheon Meeting:</td>
<td>Wednesday, December 11th</td>
<td>12:00-1:30 pm</td>
<td>Agora 3</td>
</tr>
<tr>
<td>Newcomers' Reception:</td>
<td>Wednesday, December 11th</td>
<td>6:30-8:30 pm</td>
<td>Lounge Bar Mikonos</td>
</tr>
<tr>
<td>CSS Awards Ceremony:</td>
<td>Thursday, December 12th</td>
<td>6:45-8:15 pm</td>
<td>Hermès</td>
</tr>
<tr>
<td>Conference Banquet:</td>
<td>Thursday, December 12th</td>
<td>8:15-11 pm</td>
<td>Muses</td>
</tr>
<tr>
<td>Farewell Reception:</td>
<td>Friday, December 13th</td>
<td>6:30-8:30 pm</td>
<td>Agora 3</td>
</tr>
<tr>
<td>Coffee Breaks:</td>
<td>Wednesday-Friday, December 11-13</td>
<td>9:30-10 am and 4:00-4:30 pm</td>
<td>Rhodes Exhibition Area</td>
</tr>
</tbody>
</table>

Women in Control Luncheon Meeting

Time and Location: Wednesday, December 11th, 12:00-1:30 pm, Agora 3

The IEEE CSS Women in Control committee is responsible for, but not limited to, promoting membership, gathering and disseminating appropriate information about women in IEEE CSS and the profession, and facilitating the development of mentoring and programs to promote the retention, recruitment, and growth of women IEEE CSS members. The IEEE WiC invites all CDC women to join us for our traditional luncheon on the first day of the conference, Wednesday, December 11th, 2019.
Conference Information

Registration

All conference attendees must register. Personal badges are provided to identify registered participants. Packet pick-up for advanced registrants and on-site registration are available at the Welcome Desk, which will be open from the afternoon of Monday, December 9 through the morning of Friday, December 13. Hours of operation of the Welcome Desk are as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, December 9</td>
<td>16:30 – 18:30</td>
<td></td>
</tr>
<tr>
<td>Tuesday, December 10</td>
<td>7:30 – 20:00</td>
<td></td>
</tr>
<tr>
<td>Wednesday, December 11</td>
<td>7:30 – 18:30</td>
<td></td>
</tr>
<tr>
<td>Thursday, December 12</td>
<td>7:30 – 18:30</td>
<td></td>
</tr>
<tr>
<td>Friday, December 13</td>
<td>7:30 – 15:00</td>
<td></td>
</tr>
</tbody>
</table>

All registered participants receive full access to the technical sessions, coffee breaks, opening and closing receptions, and one set of conference proceedings on a USB flash drive. Full rate registrations (Member or Non-member) also include one banquet ticket.

Registration fees are shown in the table below. Please note that only conference attendees who have registered for the conference can register for the workshops.

<table>
<thead>
<tr>
<th>Category</th>
<th>Advance Rate</th>
<th>Standard Rate</th>
<th>Number of paper uploads</th>
<th>Conference Banquet</th>
<th>Electronic Proceedings</th>
<th>Workshop Registration Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Till Oct. 1</td>
<td>From Oct. 2</td>
<td></td>
<td></td>
<td></td>
<td>Full-day</td>
</tr>
<tr>
<td>Member</td>
<td>550 EUR</td>
<td>700 EUR</td>
<td>3 Included</td>
<td>1 Included</td>
<td>1 Included</td>
<td>Till Oct. 1</td>
</tr>
<tr>
<td>Non-member</td>
<td>700 EUR</td>
<td>850 EUR</td>
<td>3 Included</td>
<td>1 Included</td>
<td>1 Included</td>
<td></td>
</tr>
<tr>
<td>Life member</td>
<td>300 EUR</td>
<td>400 EUR</td>
<td>3 Included</td>
<td>Not Included</td>
<td>1 Included</td>
<td></td>
</tr>
<tr>
<td>Student/Retiree Member</td>
<td>275 EUR</td>
<td>350 EUR</td>
<td>1 Included</td>
<td>Not Included</td>
<td>1 Included</td>
<td></td>
</tr>
<tr>
<td>Student/Retiree Non-member</td>
<td>350 EUR</td>
<td>400 EUR</td>
<td>1 Included</td>
<td>Not Included</td>
<td>1 Included</td>
<td></td>
</tr>
</tbody>
</table>

For all categories, the cost of extra paper uploads is 200 EUR per paper. The cost of an additional 7th or 8th page in the final paper is 200 EUR per page. Extra banquet tickets can be purchased for 120 EUR. Extra proceedings (USB) can be purchased for 50 EUR.
Conference Venue

The conference will be held at the Acropolis Convention centre located in the city-centre of Nice. Conference activities are spread over the three levels of the building.

Room Plan
Important Information

- Conference rooms are located on first, second and third floor.
- Workshops will be held in Méditerranée (Level 1) and Galliéni (Level 2) rooms.
- Plenary Sessions will be held on the second level (Athéna and Apollon rooms).
- Coffee Breaks will take place in the Rhodes Exhibition Area (Level 2).
- The building will be open from 7:30 am.
- The Registration Desk is located in front of the main entrance.
- Cloakrooms are available at the entrance.
- Security checks at the entrance may cause delays. Please, come early to be sure to be on time.

Meetings at Novotel

Some technical meetings will be held in “Novotel Nice Centre Vieux Nice”, which is reachable on foot in about 8 minutes from the congress venue Acropolis (see map). The Novotel rooms are Chagall, Cheret, Matisse and Garibaldi and are all located on the first floor of the hotel. See the access map on the right.
Local Attractions

With the sun present 300 days a year, its historical and cultural richness, the changing reflections of the sea, the peaks that dominate it, its brilliant beauty, its colourful accent, Nice is one the most beautiful city in France. With its special light, all those who have approached Nice keep in them the memory of a rare and precious moment.

In the “piazzettas” which are the typical streets, on the beaches and the wooded parks, with the markets and the colourful gastronomy, for a drink on the terrace or a walk around the harbour, you will love this city... Nice to be in Nice, which is also the capital of the art of living.

The history of Nice dates back to 350 BC, when the Greeks established a place on the shores of the Mediterranean Sea, called Nikaia, according to Nike, the Greek goddess of victory. On the other hand, in order to obtain an adequate image of the site's historical past, it should be mentioned that the current Nice area has been populated since prehistoric times. Also, thanks to its luminosity and its beauty, Nice have always inspired the greatest masters in different fields as architecture, painting, music and cinema. To attest, there is of course the old Nice, ambassador of Sardinian architecture, the palaces and castles with Baroque style, the concentration of museums and art galleries. But beyond the visible, there is this little extra soul, this particular atmosphere, capable of inspiring you with authentic emotions, and at the crossroads of cultures.

Walk through the old part of town is very pleasant and has a good vibe both by day and night. By strolling through the little lanes, walkers discover the city’s history and a lot of small boutiques and restaurants. On the street corner, you can hear Nissart being spoken, a dialect derived from the Oc language. The City of Nice has several parks and gardens, such as the Jardin Albert 1er, the Hanging Gardens of Paillon, the Cimiez Monastery Gardens and the gardens at the Cimiez Arenas… You can also walk in the park at the Château de Nice and the Mont-Boron forest park. Finally, you mustn’t miss Parc Phoenix. This area is home to one of the largest tropical greenhouses in the world. There are also botanical gardens and temporary exhibitions.

In addition to the Old Nice District, a place where you absolutely must visit the small regional stores; Rue Jean Médecin also has many boutiques of all kinds. Halfway down the road, one comes across the large «Nice Etoile» shopping center. Near Place Masséna, next to Rue Jean Médecin, there is a pedestrian precinct: Rue de France has several shops and some restaurants. Other "musts" to visit are the "Marché aux Fleurs" (flower market) and the Cours Saleya (fruit, vegetable and fish market).

Nice is also a capital of gastronomy. In addition to its delicate dishes based on olive oil, garlic, and vegetables, Nice is famed as the home of socca, a small pancake made with chick pea flour, not forgetting the famous ratatouille, the little Farcì Niçois or stuffed vegetables, pissaladière (a savoury tart), tourte de blettes (sweet or savoury pies), zucchini flower fritters, and the famous «salade niçoise». On the sandwich side, the Pan Bagnat is the king. As for dessert, apart from ice-cream from Old Nice, there are whole candied fruits, specialities from certain confectioneries, such as Florian and Auer, which can also be found at the Cours Saleya Market.
Nice offers more than fifteen museums, with rich collections. Nice is an exceptional city, featuring a rich cultural and artistic heritage. The pace of cultural life is regulated by the exhibitions in the museums and galleries, events in the theatres and shows at the Nice Opera House.

Nice is distinguished by a wide variety of architectural styles, originating from different periods. Over the centuries of its history, Nice has retained the imprint of each age. More information at www.nicetourisme.com.

TRANSPORTATION. Looking for a fast, easy and affordable way to check out Nice’s amazing attractions? Mobil’azur offers several public transportation options. With the two lines of the tramways, you can easily cross Nice. T2 “Ouest-Est” crosses the city from east to west, to connect the city center to the airport (via the future eco-valley station) in 20 minutes.

Nice offers a dense and very extensive bus network (get a map), with frequent connections! You can reach all the districts of Nice by bus, up to the hills. Buses from Nice operate every day. For night trips, 5 Nocbus lines are available: tram line T1 until 1:35 am and from 4:25 am and 5 bus lines from Jean-Claude-Bermond station, to Cimiez, Madeleine, Nice-East, West and North, run from 21:10 to 1:10 am.

VéloBleu also operate to discover Nice by bicycles. 1 750 self-service bicycles available every day at 175 stations throughout the city.

To learn more about public transportation options, visit https://www.lignesdazur.com/en

HOP-ON HOP-OFF BUSES TRANSPORTATION. Nice Le Grand Tour https://www.nicelegrandtour.fr/en/

NATURE, PARKS & GARDENS. Visit stunning botanical gardens, greens areas or explore our parks.

- **Monastère de Cimiez Garden**
 Place du Monastère de Cimiez
 en.nicetourisme.com/parks-and-gardens

- **Phoenix Park**
 405 Promenade des Anglais, Nice
 +33 4 92 29 77 00

MONUMENTS AND CHURCHES. Baroque-style palaces and churches, colourful facades and narrow streets.

- **Cadran Solaire**
 Quai Rauba Capeu
 en.nicetourisme.com/nice/75-le-cadran-solaire

- **Sainte-Jeanne d’Arc Church**
 11 rue Grammont, Nice
 +33 4 93 86 33 07
HISTORIC LANDMARKS. From Pre-Neanderthal to now, discover the historic landmarks which built Nice.

Cours Saleya
Rue Saint-François-de-Paule, Nice
en.nicetourisme.com/nice/45-cours-saleya

Place Masséna
City Center
en.nicetourisme.com/nice/63-la-place-massena

Place Rossetti
City Center
en.nicetourisme.com/nice/57-la-place-rossetti

Promenade des Anglais
Nice
en.nicetourisme.com/nice/64-la-promenade-des-anglais

Old Nice
City Center

MUSEUMS. Nice offers more than fifteen museums with an exceptional collection through a universal museum route.

Masséna Museum
65 rue de France, Nice
+33 4 93 91 19 10
en.nicetourisme.com/nice/186-musee-massena

National Marc Chagall Museum
Avenue Dr Ménard, Nice
+33 4 93 53 87 20
https://it.musees-nationaux-alpesmaritimes.fr/chagall/

Matisse Museum
164 Avenue des Arènes de Cimiez, Nice
+33 4 93 81 08 08
musee-matisse-nice.org/?_locale=en

MAMAC Museum
1 Place Yves Klein, Nice
+33 4 97 13 42 01
Flower Market
Cours Saleya, Nice

Fruit and Vegetables Market
Avenue Malausséna, Place du Général de Gaulle

Book Market
Place du Palais de Justice, Nice

Art-filled Market by Night
Cours Saleya, Nice

Fish Market
Place Yoja, Nice

Archeologic Museum
160 Avenue des Arènes de Cimiez, Nice
+33 4 93 81 59 57
en.nicetourisme.com/nice/185-musee-d-archeologie-de-nice-cimiez

History Natural Museum
60 Boulevard Risso, Nice
+33 4 97 13 46 80
http://mhnice.org
Sponsors and Exhibitors

Exhibition Hours:
- Wednesday, December 11: 8:30 am - 6:30 pm
- Thursday, December 12: 8:30 am - 6:30 pm
- Friday, December 13: 8:30 am - 4:00 pm

Exhibition Location: Rhodes Exhibition Area

Booth occupation

D-ICE ENGINEERING - Booth n° 6
MATHWORKS - Booth n° 4-5
MITSUBISHI ELECTRIC RESEARCH LABORATORIES - Booth n° 9-10
NASK National Research Institute - Booth n° 11-12
NOW PUBLISHERS - Booth n° 2
PRINCETON UNIVERSITY PRESS - Booth n° 3
SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS (SIAM) - Booth n° 1
SPRINGER NATURE - Booth n° 7
Gold Sponsors

The French National Centre for Scientific Research is Europe’s largest public research institution. It produces knowledge for the benefit of society, innovates and creates companies. With some 32,000 employees, a budget of 3.4 billion euros in 2018 and offices throughout France, the CNRS is present in all scientific fields through its 1100 laboratories. With 22 Nobel laureates and 12 Fields Medal winners, the organisation has a long tradition of excellence. It carries out research in mathematics, physics, information sciences and technologies, nuclear and particle physics, Earth sciences and astronomy, chemistry, biological sciences, the humanities and social sciences, engineering and the environment. http://www.cnrs.fr/en

MERL is the North American Research and Development organization for Mitsubishi Electric Corporation, a $40B global leader in electrical products including building systems (elevators, HVAC), transportation systems (automotive and train mechatronics), space systems (satellites, telescopes), factory automation (robots, servo systems, laser processing), optical systems, and energy systems (power generation, photovoltaics). Researchers at MERL collaborate with Mitsubishi Electric's corporate R&D laboratories & business units and academic partners around the world to develop technologies that extend the performance envelope of these systems. Research projects at MERL typically address industrially motivated fundamental problems, and involve the development of novel control theory and technology that is transferred to the corporate R&D laboratories for subsequent product development. MERL is an open laboratory that intends to publish all of its research once appropriate patents are secured. More information at www.merl.com.

MATLAB and Simulink are fundamental computation tools used at more than 5,000 educational intuitions worldwide. MATLAB is one of the top 10 most popular programming languages and is used for teaching, research, and project-based learning. Add MATLAB and Simulink to the classroom to inspire critical thinking and innovation as well as prepare students for prominent careers in industry, where the tools are the de facto standard for R&D. Learn more at www.mathworks.com.

NASK National Research Institute successfully combines scientific research, commercial success and cooperation with public administration. Due to the Act on the National Cybersecurity System, NASK has been designated as one of the CSIRT Response Teams. Our main research domain is AI driven cybersecurity, understood as anomaly detection, mitigation, big data acquisition, analysis and processing. We have also specialists in complex network systems, including IoT systems and mobile ad hoc networks, as well as in biometric verification. Scientific work of our researchers, focused on control theory, optimization, game theory and machine learning laid the groundwork for commercial systems successfully implemented for financial sector as well as government backed systems for critical infrastructure. Over 25 years ago NASK has introduced...
the Internet to Poland, and today is offering innovative ICT solutions for research institutions, as well as financial, business and administration clients. NASK also keeps the .pl domain name registry. See more on: eng.nask.pl.

Silver Sponsors

D-ICE is a deeptech founded in 2015 specialized in hydrodynamics, offshore engineering, robotics and artificial intelligence. Its team is committed to develop innovative softwares and cutting-edge systems towards the preservation and the sustainable exploitation of the oceans. See more on: www.d-ice.fr.

Society for Industrial and Applied Mathematics

Visit the SIAM booth to browse our textbooks and monographs and to take advantage of discounted conference pricing. Potential authors can also speak with an editor to discuss how SIAM is able to publish books of outstanding quality and accessible pricing. More info: siam.org/Publications/Books.

Bronze Sponsors

Springer Nature is one of the world’s leading global research, educational and professional publishers, home to an array of respected and trusted brands providing quality content through a range of innovative products and services. Springer Nature is the world’s largest academic book publisher, publisher of the world’s most influential journals and a pioneer in the field of open research. The company numbers almost 13,000 staff in over 50 countries and has a turnover of approximately EUR 1.5 billion. Springer Nature was formed in 2015 through the merger of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. Find out more: www.springernature.com.

Princeton University Press brings scholarly ideas to the world. We publish peer-reviewed books that connect authors and readers across spheres of knowledge to advance and enrich the global conversation. We embrace the highest standards of scholarship, inclusivity, and diversity in our publishing. In keeping with Princeton University’s commitment to serve the nation and the world, we publish for scholars, students, and engaged readers everywhere. We are delighted to be attending the IEEE Conference and look forward to seeing you at our stand. More information at www.press.princeton.edu.
Founded in 2004, Now Publishers has built a reputation as a source of excellent peer-reviewed publications in business, economics, computer science, and engineering. Their leading product series, Foundations and Trends® (FnT) offers peer-reviewed, state-of-the-art reviews of specific subjects that act as “go to” resources for graduate students and senior researchers looking for high-level introductions to new topics. More information at www.NowPublishers.com.

Copper sponsor

ANT-X provides a complete laboratory facility for research and education in multi-agent systems, flight robotics, flight control and aerospace control in order to satisfy the need for a ready to use and customizable platform for research and education. The ANT-X laboratory will enable academic researchers to achieve a fast transition to practice of advanced design methods for GNC systems and enrich the students’ experience in flight robotics and UAV control through hands-on experimental activities. See more at https://antx.it.

Check the conference app and webpage for an updated list of sponsors and exhibitors.
Every year the IEEE and the Control Systems Society recognize the outstanding contributions of individuals belonging to our technical community by giving a number of awards. The Society is very appreciative of the work each corresponding committee or subcommittee devotes to the selection process.

The 2019 IEEE CSS Awards Chair is Tryphon T. Georgiou, and the subcommittee Chairs are:

- Kirsten Morris George S. Axelby Outstanding Paper Award
- Alessandro Astolfi Antonio Ruberti Young Researcher Prize
- Jan Tommy Gravdahl IEEE Trans. on Control Systems Technology Outstanding Paper Award
- Sonia Martinez IEEE Control Systems Magazine Outstanding Paper Award
- Reza Moheimani Control Systems Technology Award
- Shah Shirish Control Systems Society Transition to Practice Award
- Paulo Tabuada Transactions on Control of Network Systems Outstanding Paper Award
- Graziano Chesi Conference on Decision and Control Best Student Paper Award
- George Pappas IEEE Control Systems Letters Outstanding Paper Award
- Thomas Parisini Roberto Tempo Best CDC Paper Award
- Kevin Wise Technical Excellence in Aerospace Control Award

More details about the IEEE CSS awards, the nomination process and past winners can be found on the IEEE CSS web site http://ieeecss.org/awards/awards-program.

CSS Distinguished Member Awards

CSS also annually confers Distinguished Member Awards to selected members of our community who have made significant technical contributions as well as having provided outstanding long-term service to the Control Systems Society. The 2019 award went to Daniel Eduardo Rivera “for outstanding long-term service to the Control Systems Society most notably for leadership of the CSS Outreach Program” and Venkataramanan Balakrishnan “for outstanding long-term service to the Control Systems Society through governance and leadership in the CSS Board of Governors and Executive Committee”.

Outstanding Chapter Award

The Outstanding Chapter Award recognizes a chapter for demonstrating a high level of activity, innovation, or growth. The Vice-President of Member Activities, Magnus Egerstedt, was responsible for this award. The 2019 Award went to the Chile Section Chapter, chaired by Gaston Lefranc, “for its technical events focused on the promotion and advancement of Control Systems during 2018”.

CDC Outstanding Student Paper and Best Student Paper Awards

The CDC Outstanding Student Paper and Best Student Paper Awards recognize excellence in a paper presented at the IEEE Conference on Decision and Control whose primary author is a student member of the IEEE. One of the Outstanding Student Paper awardees will be selected as the winner of the Best Student Paper award and will receive that award in lieu of the Outstanding Student Paper award. The awards are based on the paper’s originality, clarity, and potential impact on practical applications or
theoretical foundations of control. The CDC Outstanding Student Paper Award winners and finalists for the Best Student Paper Award are:

Finalist: Lars Lindemann (llindem@kth.se)
Advisor: Dimos V. Dimarogonas (dimos@kth.se)
Paper title: Control Barrier Functions for Multi-Agent Systems under Conflicting Local Signal Temporal Logic Tasks
Paper authors: Lars Lindemann, Dimos V. Dimarogonas
Session: ThA25.3

Finalist: Jin-Won Kim (jkim684@illinois.edu)
Advisor: Prashant G. Mehta (mehtapg@illinois.edu)
Paper title: What is the Lagrangian for Nonlinear Filtering?
Paper authors: Jin-Won Kim, Prashant G. Mehta, Sean P. Meyn
Session: WeB19.1

Finalist: Michael W. Fisher (fishermw@umich.edu)
Advisor: Ian A. Hiskens (hiskensg@umich.edu)
Paper title: Numerical Computation of Critical System Recovery Parameter Values by Trajectory Sensitivity Maximization
Paper authors: Michael W. Fisher, Ian A. Hiskens
Session: FrC14.1

Finalist: Shiba Biswal (sbiswal@asu.edu)
Advisor: Spring Berman (spring.berman@asu.edu)
Paper title: Fastest Mixing Markov Chain on a Compact Manifold
Paper authors: Shiba Biswal, Karthik Elamvazhuthi, Spring Berman
Session: WeA16.2

The winner of the IEEE 2019 CDC Best Student Paper award will be announced at the Award Ceremony.

CSM Outstanding Paper Award

The IEEE Control Systems Magazine Outstanding Paper Award is given for an article or column published during the two calendar years prior to the year of the award and is based on impact and benefit to CSS members. The 2019 Award was not assigned.

TCNS Outstanding Paper Award

The IEEE Transactions on Control of Network Systems is given for a paper published during the two calendar years prior to the year of the award and is based on originality, potential impact on the foundations on network systems, importance and practical significance in applications, and clarity. The 2019 Award was given to Erfan Nozari, Pavankumar Tallapragada, and Jorge Cortés for the paper “Differentially Private Distributed Convex Optimization via Functional Perturbation”, IEEE Transactions on Control of Network Systems, Vol. 5, No. 1, pages 395-408, 2018.
TCST Outstanding Paper Award

The IEEE Transactions on Control Systems Technology Outstanding Paper Award is given for an outstanding paper published during the two calendar years prior to the year of the award, and is based on originality, relevance of the application, clarity of exposition, and demonstrated impact on control systems technology. The 2019 Award was given to Alberto Leva, Federico Terraneo, Irene Giacomello, and William Fornaciari for the paper “Event-Based Power/Performance-Aware Thermal Management for High-Density Microprocessors”, IEEE Transactions on Control Systems Technology, Vol. 26, No. 2, pages 535-550, 2018.

George S. Axelby Outstanding Paper Award

The George S. Axelby Outstanding Paper Award is given for an outstanding paper published in the IEEE Transactions on Automatic Control during the two calendar years prior to the year of the award, and is based on originality, clarity, potential impact on the theoretical foundations of control, and practical significance in applications. The 2019 award was given to Gunther Reissig, Alexander Weber, Matthias Rungger for the paper “Feedback Refinement Relations for the Synthesis of Symbolic Controllers,” IEEE Transactions on Automatic Control, Vol. 62, No. 4, pages 1781-1796, 2017.

Control Systems Letters Outstanding Paper Award

Roberto Tempo Best CDC Paper Award

This award is given in honor of Roberto Tempo, 44th President of CSS. The Tempo Award Committee selects the best paper from the previous year’s CDC based on originality, potential impact on any aspect of control theory, technology, or implementation, and for the clarity of writing. The 2019 award was given to Takuya Ikeda and Kenji Kashima for the paper “Sparsity-constrained controllability maximization with application to time-varying control node selection”, published in IEEE Control Systems Letters, Volume 2, No. 3, pages 321-325, 2018.

Award for Technical Excellence in Aerospace Control

The Award for Technical Excellence in Aerospace Control recognizes an outstanding paper or patented idea based on originality of technical innovation, significance/relevance to the aerospace community, aerospace application and potential impact on the practice of aerospace engineering. The award can be conferred on an individual or a team. The winner of the 2019 Award for Technical Excellence in Aerospace Control is Behçet Açıkmeşe “for outstanding contributions to convex optimization-based control and its transitions and applications to aerospace applications”.

45
Control Systems Technology Award

The Control Systems Technology Award recognizes outstanding contributions to control systems technology either in design and implementation, or in project management. This award can be conferred on an individual or a team. The 2019 Award was given to the team formed by: Warren Dixon, Nitin Sharma, Matthew J. Bellman, Alan Hamlet, Christian Cousin, Courtney Rouse, Ryan Downey, Victor Duenas “for closed-loop functional electrical stimulation control methods leading to successful commercialization and personalized rehabilitative treatment options”.

Transition to Practice Award

The Transition to Practice Award recognizes outstanding collaborative scientific interactions between industry or research laboratories and academic communities that transition basic controls and system theory to practical systems for the benefit of society at large. The winner of the 2019 CSS Transition to Practice Award is Alberto Bemporad “for lasting contributions to theory and advanced applications of Model Predictive Control (MPC) culminating in mass production introduction of MPC for powertrain control in the automotive industry”. The Transition to Practice Award comes with an invitation to deliver a plenary lecture at the IEEE Conference on Control Technology and Applications CCTA 2020.

Antonio Ruberti Young Researcher Prize

The Antonio Ruberti Young Researcher Prize recognizes distinguished cutting-edge contributions by a young researcher to the theory or application of systems and control. The 2019 Ruberti prize was given to Aaron Ames, California Institute of Technology, “for fundamental contributions to the nonlinear control of hybrid and safety-critical systems, with application to walking robots and robotic assistive devices that restore mobility”.

Aaron D. Ames is the Bren Professor of Mechanical and Civil Engineering and Control and Dynamical Systems at the California Institute of Technology. He received a B.S. in Mechanical Engineering and a B.A. in Mathematics from the University of St. Thomas in 2001, and he received a M.A. in Mathematics and a Ph.D. in Electrical Engineering and Computer Sciences from UC Berkeley in 2006. Dr. Ames served as a Postdoctoral Scholar in Control and Dynamical Systems at Caltech from 2006 to 2008, and began his faculty career at Texas A&M University in 2008. Prior to joining Caltech, he was an Associate Professor in Mechanical Engineering and Electrical & Computer Engineering at the Georgia Institute of Technology. At UC Berkeley, he was the recipient of the 2005 Leon O. Chua Award for achievement in nonlinear science and the 2006 Bernard Friedman Memorial Prize in Applied Mathematics. Dr. Ames received the NSF CAREER award in 2010, and is the recipient of the 2015 Donald P. Eckman Award recognizing an outstanding young engineer in the field of automatic control. His research interests span the areas of nonlinear, safety-critical and hybrid control systems, with a special focus on dynamic robotic systems—both formally and through experimental validation. His lab designs, builds and tests novel bipedal robots, prostheses, and exoskeletons with the goal of achieving human-like legged locomotion and translating these capabilities to robotic assistive devices. The application of these ideas range from increased autonomy in robots to improving the locomotion capabilities of the mobility impaired.
Hendrik W. Bode Lecture Prize

The Hendrik W. Bode Lecture Prize recognizes distinguished contributions to control systems science or engineering. The recipient delivers a plenary lecture at the CDC, evaluating a significant contribution to control systems science or engineering. The 2019 Bode Lecture prize was awarded to Lei Guo, Institute of Systems Science, Chinese Academy of Sciences, “for contributions to the field of adaptive control, system identification, adaptive signal processing, stochastic systems, and applied mathematics”.

Lei Guo received his B.S. degree in mathematics from Shandong University in 1982, and Ph.D. degree in control theory from the Chinese Academy of Sciences in 1987. He was a postdoctoral fellow at the Australian National University (1987-1989). Since 1992, he has been a Professor of the Institute of Systems Science at the Chinese Academy of Sciences (CAS). From 2002 to 2012, he was the President of the Academy of Mathematics and Systems Science, CAS. He is currently the Director of the National Center for Mathematics and Interdisciplinary Sciences, CAS. He has worked on problems in adaptive control, system identification, adaptive signal processing, and stochastic systems. His current research interests include control of nonlinear uncertain systems, PID control theory, distributed filtering and estimation, capability of feedback, multi-agent systems, game-based control systems, and complex systems, among others.

IEEE Control Systems Award

The IEEE Control Systems Award is given for outstanding contributions to control systems engineering, science or technology. The 2019 Control Systems Award was given to Pramod P. Khargonekar, University of California, Irvine, “for contributions to robust and optimal control theory”.

Pramod Khargonekar received B. Tech. in electrical engineering in 1977 from the Indian Institute of Technology, Bombay and M.S. in mathematics in 1980 and Ph.D. in electrical engineering in 1981 from the University of Florida. He was on faculty at the University of Minnesota from 1984 to 2989. He was Chairman of the Department of Electrical Engineering and Computer Science from 1997 to 2001 and also held the position of Claude Shannon Professor at the University of Michigan. From 2001 to 2009, he was Dean of Engineering and Eckis Professor of Electrical and Computer Engineering at the University of Florida till 2016. After a brief role as Deputy Director of Technology at ARPA-E, he served as Assistant Director of the National Science Foundation from 2013 to 2016. He is currently Vice Chancellor for Research and Distinguished Professor of Electrical Engineering and Computer Science at the University of California, Irvine. His research has spanned robust and H-infinity control, control of manufacturing processes/systems, smart electric grids. He is currently exploring the confluence of machine learning and control. He is a recipient of the IEEE W. R. G. Baker Prize Award, the CSS Axelby Best Paper Award, the Hugo Schuck ACC Best Paper Award, NSF Presidential Young Investigator Award, the AAAC Donald Eckman Award, Web of Science Highly Cited Researcher, and the Distinguished Alumnus and Distinguished Service Awards from IIT Bombay. He is a Fellow of IEEE, IFAC, and AAAS.
IEEE Fellows

The grade of Fellow recognizes unusual distinction in the profession and is conferred only by invitation of the IEEE Board of Directors on a person with an extraordinary record of accomplishments in any of the IEEE fields of interest. The accomplishments honored by the grade of Fellow contribute significantly to the advancement of engineering science and technology. In 2019, the following individuals were elected Fellows as evaluated by the Control Systems Society:

- **David Castanon**, for contributions to discrete time stochastic control and information fusion
- **Bart de Schutter**, for contributions to optimization-based control of discrete-event systems, hybrid systems, transportation networks, and infrastructure networks
- **Santosh Devasia**, for contributions to feedforward control of non-minimum-phase systems
- **Nicola Elia**, for fundamental contributions to Networked Control Systems
- **Emilia Fridman**, for contributions to time-delay systems and sampled-data control
- **Keum-shik Hong**, for contributions to adaptive estimation and brain-computer interface techniques using near-infrared light
- **Mihailo Jovanovic**, for contributions to modeling, optimization, and control of large-scale and distributed systems
- **Antonis Papachristodoulou**, for fundamental contributions to theory and applications of Sum of Squares Programming and networked control systems
- **Maurizio Porfiri**, for contributions to networked control systems and biomimetic robotics
- **Murti Salapaka**, for enabling nano-science using control and systems technology for enabling nano-science using control and systems technology
- **Maarten Steinbuch**, for contributions to Advanced Motion Control, Mechatronics, Medical Robotics, and Electric Driving
- **Mario Sznaier**, for outstanding contributions to Multiobjective Robust Control, Robust Identification, and Dynamic Vision
- **Panagiotis Tsiotras**, for fundamental contributions to the application of nonlinear and optimal control to aerospace systems
- **Benjamin Van Roy**, for contributions to the theory and practice of reinforcement learning and approximate dynamic programming
- **Min Wu**, for contribution to the field of advanced control and intelligent automation for complex systems

In addition, the following members of the Control Systems Society were evaluated by other societies and elected fellows of IEEE in 2019: Bassam Bamieh, Jiming Chen, Jie Chen, Dimitar Filev, Emilio Frazzoli, Qing-Long Han, Zeng-Guang Hou, Mark Lantz, Brett Ninness, Evangelos Papadopoulos, Fuchun Sun, Donghua Zhou.
CDCs: Past, Present and Future

The annual IEEE Conference on Decision and Control (CDC) is internationally recognized as the premiere scientific and engineering conference dedicated to the advancement of the theory and practice of systems and control. It brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to decision making, control, automation, and related areas. The CDC is hosted by the IEEE Control Systems Society (CSS) and is organized in cooperation with the Society for Industrial and Applied Mathematics (SIAM), the Institute for Operations Research and the Management Sciences (INFORMS), the Japanese Society for Instrument and Control Engineers (SICE), and the European Control Association (EUCA). Below is the complete list of CDCs (including the next one) with titles, chairs and locations. The proceedings of all past conferences can be found at the IEEE Library, 345 47th Street, New York, NY 10017.
59th IEEE Conference on Decision and Control
GC: Richard D. Braatz and Chung Choo Chung, PC: Jay H. Lee, International Convention Center, Jeju Island, Republic of Korea, December 8-11, 2020

58th IEEE Conference on Decision and Control
GC: Carlos Canudas-de-Wit, PC: Rodolphe Sepulchre, Palais des Congrès et des Expositions Nice Acropolis, Nice, France, 11-13 December, 2019

57th IEEE Conference on Decision and Control
GC: Andrew R. Teel, PC: Magnus Egerstedt, Fontainebleau Miami Beach, Miami, FL, 17-19 December, 2018

56th IEEE Conference on Decision and Control
GC: Rick Middleton and Dragan Nesic, PC: Mario Sznaier, Melbourne Convention Center, Melbourne, Australia, 12-15 December, 2017

55th IEEE Conference on Decision and Control

54th IEEE Conference on Decision and Control
GC: Yoshiito Ohta, PC: Mitsuj Sampe, Osaka International Convention Center, Osaka, Japan, 15-18 December, 2015

53rd IEEE Conference on Decision and Control
GC: Faryar Jabbari, PC: Andy Teel, J.W. Marriott Hotel, Los Angeles, CA, 15-17 December, 2014

52nd IEEE Conference on Decision and Control
GC: Thomas Parisini and Roberto Tempo, PC: André L. Tits, Palazzo dei Congressi, Firenze, Italy, 10-13 December, 2013

51st IEEE Conference on Decision and Control
GC: Jay Farrell, PC: Maria Elena Valcher, Grand Wailea, Maui, HI, 11-14 December, 2012

50th IEEE Conference on Decision and Control and Joint European Control Conference
GC: Edwin Chong, GVC: Jay Farrell, Eduardo Camacho, PC: Marios Polycarpou, Hilton Bonnet Creek, Orlando, FL, 12-15 December, 2011

49th IEEE Conference on Decision and Control
GC: Mark W. Spong, PC: Fathi Ghorbel, Hilton Atlanta, Atlanta, GA, 15-17 December, 2010

Joint 48th IEEE Conference on Decision and Control
Chinese Control Conference
GC: John Bailieul and Lei Guo, PC: Faryar Jabbari and Daizhan Cheng, Shanghai International Convention Center, Shanghai, China, 16-18 December, 2009

47th IEEE Conference on Decision and Control
GC: Chaouki Abdallah, PC: Thomas Parisini Fiesta American Grand Coral, Cancun, Mexico, 9-12 December, 2008

46th IEEE Conference on Decision and Control
GC: David Castanon, PC: James Spall, Hilton New Orleans Riverside, New Orleans, LA, 12-14 December, 2007

45th IEEE Conference on Decision and Control

Joint 44th Conference on Decision and Control, and 2005 European Control Conference
GC: Eduardo Camacho, GVC: Peter Fleming, Steve Yurkovich, PC: Roberto Tempo, Melia Seville, Seville, Spain, 12-15 December, 2005

43rd IEEE Conference on Decision and Control
GC: Christos Cassandras, PC: Wei-bo Gong, The Atlantis, Paradise Islands, The Bahamas, 14-17 December, 2004

42nd IEEE Conference on Decision and Control
GC: Frank Lewis, PC: Chaouki Abdallah, Hyatt Regency Maui, Maui, HI, 9-12 December, 2003

41st IEEE Conference on Decision and Control
GC: Umit Ozguner, PC: Kenneth Loparo, The Venetian Hotel, Las Vegas, NV, 10-13 December, 2002

40th IEEE Conference on Decision and Control
GC: Theodore E. Djaferis, PC: Kevin M. Passino, Hyatt Regency Grand Cypress, Orlando, FL, 4-7 December, 2001

39th IEEE Conference on Decision and Control
GC: Robert R. Bitmead, PC: Cheryl B. Schrader, Sydney Convention and Exhibition Centre, Sydney, NSW Australia; 12-15 December, 2000

38th IEEE Conference on Decision and Control
GC: Edward W. Kamen, PC: Christos Cassandras, Crowne Plaza Hotel and Resort, Phoenix, AZ, 7-10 December, 1999

37th IEEE Conference on Decision and Control
GC: J. Douglas Birdwell, PC: David Castanon, Hyatt Regency Westshore, Tampa FL, 16-18 December, 1998
36th IEEE Conference on Decision and Control
GC: Anthony Michel, PC: Theodore E. Djaferis
Hyatt Regency San Diego, San Diego, CA, 10-12 December, 1997

35th IEEE Conference on Decision and Control
GC: Hidenori Kimura, Co-PCs: Katsuhsia Furuta, J. Douglas Birdwell, Portopia Hotel and International Conference Center, Kobe, Japan, 11-13 December, 1996

34th IEEE Conference on Decision and Control
GC: Panos J. Antsaklis, PC: Edward W. Kamen,

33rd IEEE Conference on Decision and Control
GC: Michael K. Masten, PC: N. Harris McClamroch,
Buena Vista Palace, Lake Buena Vista, FL, 14-16 December, 1994

32nd IEEE Conference on Decision and Control
GC: Raymond A. DeCarlo, PC: Peter Ramadge,
Marriott River Center, San Antonio, TX, 15-17 December, 1993

31st IEEE Conference on Decision and Control
GC: Tamer Basar, PC: Sergio Verdu, Westin La Paloma, Tucson, AZ, 16-18 December, 1992

30th IEEE Conference on Decision and Control
GC: Derek Atherton, PC: Panos J. Antsaklis,
Metropole Hotel, Brighton, ENGLAND, 11-13 December, 1991

29th IEEE Conference on Decision and Control
GC: Charles J. Herget, PC: Raymond A. DeCarlo,
Hilton Hawaiian Village, Honolulu, HI, 5-7 December, 1990

28th IEEE Conference on Decision and Control
GC: Leonard Shaw, PC: Tamer Basar, Hyatt Regency Tampa Hotel, Tampa, FL, 13-15 December, 1989

27th IEEE Conference on Decision and Control
GC: Michael P. Polis, PC: William E. Schmitendorf,
Hyatt Regency Austin on Town Lake, Austin, TX, 7-9 December, 1988

26th IEEE Conference on Decision and Control
GC: William S. Levine, PC: John Baillieul,
Westin Century-Plaza Hotel, Los Angeles, CA, 9-11 December, 1987

25th IEEE Conference on Decision and Control
GC: Anthony Ephremides, Spyros Tzafestas,
PC: H. Vincent Poor, Atheneum Intercontinental Athens, Greece; 10-12 December, 1986

24th IEEE Conference on Decision and Control
GC: Gene F. Franklin, PC: Anthony N. Michel,
Bonaventure Hotel & Spa, Ft. Lauderdale, FL, 11-13 December, 1985

23rd IEEE Conference on Decision and Control
GC: Abraham H. Haddad, PC: Michael P. Polis,
Las Vegas Hilton, Las Vegas, NV, 12-14 December, 1984

22nd IEEE Conference on Decision and Control
GC: James L. Melsa, PC: Steven I. Marcus,
Marriott Hotel, San Antonio, TX, 14-16 December, 1983

21st IEEE Conference on Decision and Control
GC: Alexander H. Levis, PC: William S. Levine,
Holiday Inn - International Drive, Orlando, FL, 8-10 December, 1982

Processes, GC: J. B. Cruz, Jr., PC: J. B. Pearson, SC: G. Stein, Hyatt Regency, Houston, TX, 10-12 December, 1975

1970 Symposium on Adaptive Processes (9th) Decision and Control, GC: D. J. Lainiotis University of Texas at Austin, Austin, TX, 7-9 December, 1970

Symposium on Adaptive Processes; part of NEC GC: F. N. Bailey, PC: J. C. Hancock, McCormick Place, Chicago, IL, 3-5 October, 1966

Symposium on Adaptive Processes; part of NEC GC: E. C. Jones, Jr., PC: G. Brown, McCormick Place Chicago, IL, 25-27 October, 1965

Symposium on Adaptive Processes; part of NEC GC: F. J. Mullin, McCormick Place, Chicago, IL, 19-21 October, 1964

Symposium on Adaptive Processes; part of NEC GC: L. Kanal, McCormick Place, Chicago, IL, 28-29 October, 1963

Discrete Adaptive Processes Symposium and Panel Discussion (IEEE); part of 3rd JACC GC: J. Sklansky New York University, New York City, NY, 29 June, 196
PROGRAM AT A GLANCE
<table>
<thead>
<tr>
<th>Track</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08:30-</td>
<td>08:30-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:00-</td>
<td>09:30-</td>
<td></td>
</tr>
<tr>
<td>CDC</td>
<td>Technical</td>
<td>Program</td>
<td>Wednesday</td>
<td>December</td>
<td>11, 2019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:00-</td>
</tr>
<tr>
<td></td>
<td>12:00</td>
</tr>
<tr>
<td></td>
<td>WeA01</td>
<td>WeA02</td>
<td>WeA03</td>
<td>WeA04</td>
<td>WeA05</td>
<td>WeA06</td>
<td>WeA07</td>
<td>WeA08</td>
<td>WeA09</td>
<td>WeA10</td>
<td>WeA11</td>
<td>WeA12</td>
<td>WeA13</td>
<td>WeA14</td>
<td>WeA15</td>
<td>WeA16</td>
<td>WeA17</td>
<td>WeA18</td>
<td>WeA19</td>
<td>WeA20</td>
<td>WeA21</td>
<td>WeA22</td>
<td>WeA23</td>
<td>WeA24</td>
<td>WeA25</td>
<td>WeA26</td>
</tr>
<tr>
<td></td>
<td>Médite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>erranée</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>14:00-</td>
</tr>
<tr>
<td></td>
<td>16:00</td>
</tr>
<tr>
<td></td>
<td>WeB01</td>
<td>WeB02</td>
<td>WeB03</td>
<td>WeB04</td>
<td>WeB05</td>
<td>WeB06</td>
<td>WeB07</td>
<td>WeB08</td>
<td>WeB09</td>
<td>WeB10</td>
<td>WeB11</td>
<td>WeB12</td>
<td>WeB13</td>
<td>WeB14</td>
<td>WeB15</td>
<td>WeB16</td>
<td>WeB17</td>
<td>WeB18</td>
<td>WeB19</td>
<td>WeB20</td>
<td>WeB21</td>
<td>WeB22</td>
<td>WeB23</td>
<td>WeB24</td>
<td>WeB25</td>
<td>WeB26</td>
</tr>
<tr>
<td></td>
<td>Médite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>erranée</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Genetic</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>Méditerranée 1: Biological Rhythms and Oscillators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 2: Power Systems Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 3: Adaptive Control III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 4: Discrete Event Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 5: Constrained Control of Networks II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 6: Estimation and Control of PDE Systems III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 7: Game Theory I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 8: Analytic and Geometric Tools in Quantum Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 9: Lyapunov Methods III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 10: Predictive Control for Nonlinear Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 11: Optimality Conditions for Control Problems II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediterranean 12: New Mobility Systems</td>
<td></td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>Gallieni 1: Markov Processes II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gallieni 2: Stochastic Systems I</td>
<td></td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>Rhode 1: Event-Triggered and Self-Triggered Control of Distributed Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 2: Observer for Nonlinear Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 3: Optimality Conditions for Control Problems II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 4: New Mobility Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 5: Predictive Control for Nonlinear Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 6: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 7: Learning III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 8: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 9: Learning III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 10: Learning Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 11: Learning III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhode 12: Learning III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hermes III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Athena III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 1: Sensor and Control Networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 2: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 3: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 4: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 5: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 6: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 7: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 8: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 9: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 10: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 11: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risso 12: Learning-Based Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Athena III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hermes III</td>
<td></td>
</tr>
<tr>
<td>Track</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThA01</td>
<td>ThA02</td>
<td>ThA03</td>
<td>ThA04</td>
<td>ThA05</td>
<td>ThA06</td>
<td>ThA07</td>
<td>ThA08</td>
<td>ThA09</td>
<td>ThA10</td>
<td>ThA11</td>
<td>ThA12</td>
<td>ThA13</td>
<td>ThA14</td>
<td>ThA15</td>
<td>ThA16</td>
<td>ThA17</td>
<td>ThA18</td>
<td>ThA19</td>
<td>ThA20</td>
<td>ThA21</td>
<td>ThA22</td>
<td>ThA23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méditer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rannée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>C12</td>
<td>C13</td>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>C19</td>
<td>C20</td>
<td>C21</td>
<td>C22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

CDC 2019 Technical Program Thursday December 12, 2019

08:30-09:30 ThSP1
Apollon
Distributed Machine Learning Over Networks

08:30-09:30 ThSP2
Athena
The Curse of Linearity and Time-Invariance
<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-18:30</td>
<td>ThC01</td>
<td>Méditerranée 1 Control Theory in Neuroscience</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC02</td>
<td>Méditerranée 2 Control Applications</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC03</td>
<td>Méditerranée 5 Autonomous Systems</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC04</td>
<td>Méditerranée A2 Fuzzy Systems and Evolutionary Computing</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC05</td>
<td>Méditerranée C4 Energy Systems</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC06</td>
<td>Méditerranée A3 Optimization Algorithms</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC07</td>
<td>Méditerranée A1 Aerospace</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC08</td>
<td>Méditerranée B12 Game Theory</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC09</td>
<td>Méditerranée C12 Modeling, Estimation, and Control of Large-Scale Network Systems</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC10</td>
<td>Méditerranée C12 Distribution Parameter Systems I</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC11</td>
<td>Méditerranée C12 Distribution Parameter Systems II</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC12</td>
<td>Méditerranée C12 Distribution Parameter Systems III</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC13</td>
<td>Méditerranée C12 Distribution Parameter Networks I</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC14</td>
<td>Méditerranée C12 Distribution Parameter Networks II</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC15</td>
<td>Méditerranée C12 Distribution Parameter Systems IV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC16</td>
<td>Méditerranée C12 Distribution Parameter Systems V</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC17</td>
<td>Méditerranée C12 Distribution Parameter Networks IV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC18</td>
<td>Méditerranée C12 Distribution Parameter Systems VI</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC19</td>
<td>Méditerranée C12 Distribution Parameter Systems VII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC20</td>
<td>Méditerranée C12 Distribution Parameter Networks VII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC21</td>
<td>Méditerranée C12 Distribution Parameter Systems VIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC22</td>
<td>Méditerranée C12 Distribution Parameter Networks VIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC23</td>
<td>Méditerranée C12 Distribution Parameter Systems IX</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC24</td>
<td>Méditerranée C12 Distribution Parameter Networks IX</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC25</td>
<td>Méditerranée C12 Distribution Parameter Systems X</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC26</td>
<td>Méditerranée C12 Distribution Parameter Networks X</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC27</td>
<td>Méditerranée C12 Distribution Parameter Systems XI</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC28</td>
<td>Méditerranée C12 Distribution Parameter Networks XI</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC29</td>
<td>Méditerranée C12 Distribution Parameter Systems XII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC30</td>
<td>Méditerranée C12 Distribution Parameter Networks XII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC31</td>
<td>Méditerranée C12 Distribution Parameter Systems XIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC32</td>
<td>Méditerranée C12 Distribution Parameter Networks XIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC33</td>
<td>Méditerranée C12 Distribution Parameter Systems XIV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC34</td>
<td>Méditerranée C12 Distribution Parameter Networks XIV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC35</td>
<td>Méditerranée C12 Distribution Parameter Systems XV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC36</td>
<td>Méditerranée C12 Distribution Parameter Networks XV</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC37</td>
<td>Méditerranée C12 Distribution Parameter Systems XVI</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC38</td>
<td>Méditerranée C12 Distribution Parameter Networks XVI</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC39</td>
<td>Méditerranée C12 Distribution Parameter Systems XVII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC40</td>
<td>Méditerranée C12 Distribution Parameter Networks XVII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC41</td>
<td>Méditerranée C12 Distribution Parameter Systems XVIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC42</td>
<td>Méditerranée C12 Distribution Parameter Networks XVIII</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC43</td>
<td>Méditerranée C12 Distribution Parameter Systems XIX</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC44</td>
<td>Méditerranée C12 Distribution Parameter Networks XIX</td>
</tr>
<tr>
<td>16:30-18:30</td>
<td>ThC45</td>
<td>Méditerranée C12 Distribution Parameter Systems X and Traffic Control in Mixed Autonomy Environments</td>
</tr>
</tbody>
</table>
CDC 2019 Technical Program Friday December 13, 2019

| Track 1 | Track 2 | Track 3 | Track 4 | Track 5 | Track 6 | Track 7 | Track 8 | Track 9 | Track 10 | Track 11 | Track 12 | Track 13 | Track 14 | Track 15 | Track 16 | Track 17 | Track 18 | Track 19 | Track 20 | Track 21 | Track 22 | Track 23 | Track 24 | Track 25 | Track 26 |
|--------|
| 08:30-09:30 | FrP1 | Apollon | Feedback and Uncertainty: Some Basic Problems and Theorems |

10:00-12:00

FrA01

- Maldonado, E: *Nonlinear Modeling and Estimation in Biomedical Systems*

FrA02

- Medrano, E: *Automated Control Systems I*

FrA03

- Miranda, P: *Autonomous Vehicles*

FrA04

- Medrano, E: *Modern Computational and Algorithmic Challenges on Switched Systems*

FrA05

- Miranda, P: *Robust Control I*

FrA06

- Medrano, E: *Optimization Algorithms IV*

FrA07

- Miranda, P: *Flight Control*

FrA08

- Medrano, E: *Control Systems II*

FrA09

- Miranda, P: *Actuator Design for Robust Control*

FrA10

- Medrano, E: *Scheduling Control*

FrA11

- Miranda, P: *Preliminary Analysis of the System*

FrA12

- Medrano, E: *iSyst*

FrA13

- Miranda, P: *Game Theory V*

FrA14

- Medrano, E: *System Stability and Phase Boundaries*

FrA15

- Miranda, P: *Optimal Control IV*

FrA16

- Medrano, E: *Real-Time Optimization Methods for Power Systems*

FrA17

- Miranda, P: *Formal Methods in Control*

FrB01

- Borenstein, E: *Biomedical Systems II*

FrB02

- Borenstein, E: *Automotive Control I*

FrB03

- Borenstein, E: *Neural Networks II*

FrB04

- Borenstein, E: *Analysis and Control Methods to Improve Resilience of Discrete-Event Systems*

FrB05

- Borenstein, E: *Robust Control II*

FrB06

- Borenstein, E: *Neural Networks III*

FrB07

- Borenstein, E: *Adaptive Control for the Design and Implementation of Uncertain Mechatronic Systems*

FrB08

- Borenstein, E: *Structure Preserving Discretization of PDEs for Control of Flow Applications*

FrB09

- Borenstein, E: *Control of Discrete-Time Systems I*

FrB10

- Borenstein, E: *Gallien I: Scheduling Control*

FrB11

- Borenstein, E: *Gallien I: Preliminary Analysis of the System*

FrB12

- Borenstein, E: *Game Theory V*

FrB13

- Borenstein, E: *System Stability and Phase Boundaries*

FrB14

- Borenstein, E: *Optimal Control IV*

FrB15

- Borenstein, E: *Real-Time Optimization Methods for Power Systems*

FrB16

- Borenstein, E: *Formal Methods in Control*

FrB17

- Borenstein, E: *Preliminary Analysis of the System*

FrB18

- Borenstein, E: *Game Theory V*

FrB19

- Borenstein, E: *System Stability and Phase Boundaries*

FrB20

- Borenstein, E: *Optimal Control IV*

FrB21

- Borenstein, E: *Real-Time Optimization Methods for Power Systems*

FrB22

- Borenstein, E: *Formal Methods in Control*

FrB23

- Borenstein, E: *Preliminary Analysis of the System*

FrB24

- Borenstein, E: *Game Theory V*

FrB25

- Borenstein, E: *System Stability and Phase Boundaries*

FrB26

- Borenstein, E: *Optimal Control IV*
TECHNICAL PROGRAM
Technical Program for Wednesday December 11, 2019

WeSP1
Genetic Circuit Engineering Meets Control Theory (Semiplenary Session)
Chair: Khammash, Mustafa H.
ETH Zurich
08:30-09:30
Genetic Circuit Engineering Meets Control Theory
Del Vecchio, Domitilla
Massachusetts Institute of Technology

WeSP2
Equivariant Observers: Robust Nonlinear State Estimation for Robotic Systems (Semiplenary Session)
Chair: Johansson, Karl H.
KTH Royal Institute of Technology
08:30-09:30
Equivariant Observers: Robust Nonlinear State Estimation for Robotic Systems
Mahony, Robert
Australian National University

WeA01
Biological Systems I (Regular Session)
Chair: Gouze, Jean-Luc
INRIA
Co-Chair: Margaliot, Michael
Tel Aviv University
10:00-10:10
Lehtimäki, Mikko
Paunonen, Lassi
Linne, Marja-Leena
Tampere University
10:20-10:40
Productivity Analysis and Non-Linear Gain Scheduling Approach for Multi-Species Bioprocesses with Product Inhibition, pp. 7-12.
Skupin, Piotr
Rapaport, Alain
Tampere University
University of Montpellier, INRA, Montpellier SupAgro
11:00-11:20
dos Reis de Souza, Alex
Efimov, Denis
Polyakov, Andrey
Gouze, Jean-Luc
INRIA
11:20-11:40
Hasnain, Aqib
Boddupalli, Nibodh
Yeung, Enoch
University of California, Santa Barbara
11:40-12:00
Bar-Shalom, Eyal
Ovseevich, Alexander
Margaliot, Michael
Tel Aviv University
11:40-12:00
Singular Regimes for the Maximization of Metabolite Production, pp. 31-36.
Yabo, Agustín Gabriel
Caillaux, Jean-Baptiste
Gouze, Jean-Luc
INRIA, LJAD

WeA02
Delay Systems I (Regular Session)
Chair: Pepe, Pierdomenico
University of L’Aquila
Co-Chair: De Iuliis, Vittorio
University of L’Aquila
10:10-10:20
De Iuliis, Vittorio
D’Innocenzo, Alessandro
Germani, Alfredo
Manes, Costanzo
University of L’Aquila
10:20-10:40
Chaillet, Antoine
Orlowski, Jakub
Pepe, Pierdomenico
University of L’Aquila
10:40-11:00
Exact Delay Consensus Margin of First-Order Agents under PID Protocol, pp. 54-59.
Zhou, Bin
Michiels, Wim
Katholieke Universiteit Leuven
11:00-11:20
Zhang, Zhe
Zhou, Bin
Michiels, Wim
Harbin Institute of Technology
11:20-11:40
Cadence Tracking for Switched FES Cycling with Unknown Input Delay, pp. 60-65.
Allen, Brendon C.
Cousin, Christian
Rousse, Courtney
Dixon, Warren E.
University of Florida
University of Florida
University of Florida
University of Florida
Tecnológico Nacional de México/
Universidad Nacional Autónoma

Chair: Baldi, Simone
Delft University of Technology

Co-Chair: Dugard, Luc
CNRS-Grenoble INP

10:00-10:20

WeA03.1
Roy, Spadan
Delft University of Technology

Baldi, Simone
School of Mathematics

10:20-10:40

WeA03.2
Landau, Ioan Dore
GIPSA-LAB, Control Dept

Airimitoieae, Tudor-Bogdan
University of Bordeaux

Melendez, Raúl
GIPSA-LAB

Dugard, Luc
CNRS

10:40-11:00

WeA03.3
Adaptive Set-Point Regulation Using Multiple Estimators, pp. 84-89.
Shahab, Mohamad T.
University of Waterloo

Miller, Daniel E.
University of Waterloo

11:00-11:20

WeA03.4
Passivity-Based Adaptive Control of Quadrotors with Mass and Moment of Inertia Uncertainties, pp. 90-95.
Song, Jeyoung
DGIST

Chang, Dong Eui
Korea Advanced Institute of Science and Technology

Eun, Yongsoo
DGIST

11:20-11:40

WeA03.5
Franco Jaramillo, José
Tecnológico Nacional de México/ROBERTO

Rios, Héctor
CONACYT-Tecnológico Nacional de México/TLA

Ferreira de Loza, Alejandra
Universidad Nacional Autónoma de Mexico

11:40-12:00

WeA03.6
Vau, Bernard
ENS Paris-Saclay

Landau, Ioan Dore
GIPSA-LAB

WeA04
Boolean Control Networks (Regular Session)
WeA04.1
Synthesis for Controllability and Observability of Logical

WeA05
Control of Systems Subject to Constraints (Invited Session)
WeA05.1
Rizvi, Syed Ali Asad
University of Virginia

Lin, Zongli
University of Virginia

10:00-10:20

WeA05.2
Single Harmonic Based Model Predictive Control for Tracking (I), pp. 151-156.
Krupa, Pablo
University of Seville

Cunis, Torbjørn ONERA - French Aerospace Lab
Liao-McPherson, Dominic University of Michigan
Condonines, Jean-Philippe ENAC
Burlion, Laurent Rutgers, State University of New Jersey
Kolmanovsky, Ilya V. University of Michigan

Turner, Matthew C. University of Leicester
Drummond, Ross University of Oxford

Regional Stability of Discrete-Time Linear Systems Subject to Asymmetric Input Saturation (I), pp. 169-174.

Broering Groff, Leonardo Universidade Federal do Rio Grande do Sul (UFRGS)
Gomes da Silva Jr, Joao Universidade Federal do Rio Grande do Sul (UFRGS)
Valmorbida, Giorgio L2S, CentraleSupelec

Closed-Form Barrier Functions for Multi-Agent Ellipsoidal Systems with Uncertain Lagrangian Dynamics, pp. 175-180.

Virginis, Christos KTH Royal Institute of Technology
Dimarogonas, Dimos V. KTH Royal Institute of Technology

Kim, Jung Hoon Pohang University of Science and Technology
Hagiwara, Tomomichi Kyoto University

H_inf Optimal Sampled-Data Controller Synthesis with Generalised Disturbance and Performance Channels, pp. 207-212.

Dreef, H.J. Eindhoven University of Technology
Donkers, M.C.F. Eindhoven University of Technology

Sampled-Data Extremum-Seeking Control for Optimization of Constrained Dynamical Systems Using Barrier Function Methods, pp. 213-219.

Hazeleger, Leroy Eindhoven University of Technology
Nesic, Dragan University of Melbourne
Van De Wouw, Nathan Eindhoven University of Technology

Robotics I (Regular Session) Méditerranée A1

Chair: Kyriakopoulos, Kostas National Tech. Univ. of Athens J.
Co-Chair: Matveev, Alexey S. Saint Petersburg University

Etienne, Lucien Institut Mine Télécom Lille Douai
Motchon, Koffi M. Djidula Université de Reims
Fiter, Christophe Université de Lille- CRISTAL (UMR CNRS 9189)

Mi, La Technion-IIT
Mirkin, Leonid Technion-IIT

Zhang, Xinkai University of Nebraska
Bradley, Justin University of Nebraska

WeA05.1

Chair: Matveev, Alexey S. Saint Petersburg University

10:00-10:20

10:20-10:40

10:40-11:00

11:00-11:20

11:20-12:00
Integrated Path Following and Collision Avoidance Using a Composite Vector Field, pp. 250-255.

Yao, Weijia University of Groningen
Lin, Bohuan University of Groningen
Cao, Ming University of Groningen

WeA08 Méditerranée 3
Estimation and Control of PDE Systems I (Invited Session)
Chair: Fahroo, Fariba AFOSR
Co-Chair: Demetriou, Michael A. Worcester Polytechnic Institute
Organizer: Demetriou, Michael A. Worcester Polytechnic Institute
Organizer: Fahroo, Fariba AFOSR
Organizer: Le Gorrec, Yann EnsMm, Femto-ST / As2m

Network-Based Control of Damped Beam Equation under Point and Pointlike Measurements (I), pp. 256-261.
Terushkin, Maria Tel Aviv University
Fridman, Emilia Tel Aviv University

10:00-10:20 WeA08.1

Das, Amritam Eindhoven University of Technology
Shivakumar, Sachin Arizona State University
Weiland, Siep Eindhoven University of Technology
Peet, Matthew M. Arizona State University

10:40-11:00 WeA08.3

Sampled-Data Control of 2D Kuramoto-Sivashinsky Equation under the Averaged Measurements (I), pp. 268-273.
Kang, Wen University of Science and Technology Beijing
Fridman, Emilia Tel-Aviv University

11:00-11:20 WeA08.4

A Path Planning Algorithm for Human Evacuations with an Environment Dependent Motion (I), pp. 274-279.
Demetriou, Michael A. Worcester Polytechnic Institute
Kontopyrgos, Marios Worcester Polytechnic Institute

11:20-11:40 WeA08.5

Shivakumar, Sachin Arizona State University
Das, Amritam Eindhoven University of Technology
Weiland, Siep Eindhoven University of Technology
Peet, Matthew M. Arizona State University

WeA09 Méditerranée B12
Mean-Field Games I (Invited Session)
Chair: Tembine, Hamidou New York University (NYU)
Co-Chair: Gomes, Diogo King Abdullah University of Science and Technology
Organizer: Tembine, Hamidou New York University (NYU)
Organizer: Gomes, Diogo King Abdullah University ofScience and Technology

10:00-10:20 WeA10.1
Models and Control Methods for Traffic Networks (Invited Session)
Chair: Como, Giacomo Politecnico di Torino
Co-Chair: Dele Monache, Maria Laura INRIA Grenoble Rhône-Alpes
Organizer: Dele Monache, Maria Laura INRIA Grenoble Rhône-Alpes
Organizer: Pasquale, Cecilia Università di Genova
Organizer: Siri, Silvia Università di Genova

11:40-12:00 WeA09.6
Partially-Observed Discrete-Time Risk-Sensitive Mean-Field Games (I), pp. 317-322.
Saldi, Naci Ozyegin University
Basar, Tamer University of Illinois, Urbana Champaign
Raginsky, Maxim University of Illinois, Urbana Champaign

11:20-11:40 WeA09.5
Mean Field Games on Prosumers (I), pp. 311-316.
Baar, Wouter University of Groningen
Bauso, Dario University of Groningen

11:00-11:20 WeA09.4
The Current Method for Stationary Mean-Field Games on Networks (I), pp. 305-310.
Farias, Diego Marcon Universidade Federal do Rio Grande do Sul
Gomes, Diogo King Abdullah University of Science and Technology
Fatimah, Al Saleh King Abdullah University of Science and Technology

10:40-11:00 WeA09.3
A Quantized Mean Field Game Approach to Energy Pricing with Application to Fleets of Plug-In Electric Vehicles (I), pp. 299-304.
Foguen Tchuendom, Rinel Ecole Poly. de Montreal
Malhame, Roland P. Ecole Poly. de Montreal
Caines, Peter E. McGill University

10:20-10:40 WeA08.2
Fractional Mean-Field-Type Games under Non-Quadratic Costs: A Direct Method (I), pp. 293-298.
Barreiro-Gomez, Julian New York University Abu Dhabi (NYUAD)
Djehiche, Boualem KTH Royal Institute of Technology
Duncan, Tyrone E. University of Kansas
Pasik-Duncan, Bozenna University of Kansas
Tembine, Hamidou New York University

10:00-10:20 WeA08.1
Caines, Peter E. McGill University
Huang, Minyi Carleton University

10:20-10:40
- Zhang, Yue
- Cassandra, Christos G.

10:40-11:00
On a Weaker Notion of Ring Stability for Mixed Traffic with Human-Driven and Autonomous Vehicles (I), pp. 335-340.
- Giammarino, Vittorio
- Lyu, Maolong
- Baldi, Simone
- Frasca, Paolo
- Delle Monache, Maria Laura

11:00-11:20
- Kouvelas, Anastasios
- Saeedmanesh, Mohammadreza
- Geroliminis, Nikolas
- INRIA Grenoble Rhône-Alpes

11:20-11:40
- BiYIK, Erdem
- Lazar, Daniel
- Sadigh, Dorsa
- Pedarsani, Ramtin

11:40-12:00
- Cianfanelli, Leonardo
- Como, Giacomo

WeA11
Observators for Linear Systems (Regular Session)
Chair: Silvestre, Carlos
Co-Chair: Sassano, Mario

10:00-10:20
Sensitivity Analysis for Linear Systems Based on Reachability Sets, pp. 361-366.
- Silvestre, Daniel
- Rosa, Paulo
- Hespanha, Joao P.
- Silvestre, Carlos

10:20-10:40
A Distributed Observer for a Discrete-Time Linear System, pp. 367-372.
- Wang, Lili

WeA12
Dynamics, Control and Information Processing of Quantum Systems (Invited Session)
Chair: Dong, Daoyi
Co-Chair: Nurdin, Hendra I
Organizer: Dong, Daoyi
Organizer: Ticozzi, Francesco
Organizer: Li, Jr-Shin

10:00-10:20
Tomography of Binary Quantum Detectors (I), pp. 396-400.
- Wang, Yuanlong
- Dong, Daoyi
- Yonezawa, Hidehiro

10:20-10:40
- Chen, Jiayin
- Nurdin, Hendra I
- Yamamoto, Naoki
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40-11:00</td>
<td>WeA12.3</td>
<td>Is Entanglement Necessary in the Reservoir Input? (I), pp. 407-412.</td>
<td>Miao, Zibo Harbin Institute of Technology, Shenzhen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chen, Yu The Chinese University of Hong Kong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yuan, Haidong Hong Kong Polytechnic University</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>WeA12.4</td>
<td>Quantum Information Encoding from Stabilizing Dynamics (I), pp. 413-418.</td>
<td>Bhasin, Shubhendu Indian Institute of Technology, Delhi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Althoff, Matthias Technical University of Munich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cesnik, Carlos University of Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dhar, Abhishek Indian Institute of Technology, Delhi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gruber, Felix Technical University of Munich</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>WeA12.5</td>
<td>Robust Population Transfer for Coupled Spin Ensembles (I), pp. 419-424.</td>
<td>Zhang, Wei Washington University in St. Louis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Narayanan, Vignesh Washington University in St. Louis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Li, Jr-Shin Washington University in St. Louis</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>WeA12.6</td>
<td>A Quantum Karhunen-Loeve Expansion and Quadratic-Exponential Functionals for Linear Quantum Stochastic Systems (I), pp. 425-430.</td>
<td>Vladimirov, Igor G. Australian National University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Petersen, Ian R. Australian National University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>James, Matthew R. Australian National University</td>
</tr>
<tr>
<td>10:00-10:20</td>
<td>WeA13.1</td>
<td>Predictive Control for Linear Systems I (Regular Session)</td>
<td>Chair: Görges, Daniel University of Kaiserslautern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Co-Chair: Maciejowski, Jan M. University of Cambridge</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>WeA13.2</td>
<td>Scalable Robust Model Predictive Control for Linear Sampled-Data Systems, pp. 438-444.</td>
<td>de Freitas Virgilio Pereira University of Michigan Mateus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kolmanovsky, Ilya V. University of Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cesnik, Carlos University of Michigan</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>WeA13.3</td>
<td>Robust Self-Triggered MPC for Constrained Linear Systems with Additive Disturbance, pp. 445-450.</td>
<td>Lu, Liang Qingdao University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maciejowski, Jan M. University of Cambridge</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>WeA13.4</td>
<td>Tube Based Adaptive Model Predictive Control, pp. 451-456.</td>
<td>Smirnova, Vera Saint-Petersburg University of Architecture and Civil Engineering</td>
</tr>
</tbody>
</table>

2023 European Control Conference

- **Chair:** Görges, Daniel University of Kaiserslautern
- **Co-Chair:** Maciejowski, Jan M. University of Cambridge

Lecture: Predictive Control for Linear Systems I

Topics:*
- Scalable Robust Model Predictive Control for Linear Sampled-Data Systems
- Robust Self-Triggered MPC for Constrained Linear Systems with Additive Disturbance
- Tube Based Adaptive Model Predictive Control
Leader-Follower Trajectory Tracking Control for a Mobile Robot with Unknown Amplitudes of Reference Velocities and Input Disturbances, pp. 499-504.

Zhang, Xu
Shanghai Jiao Tong University
Yu, Xiao
Chen, Weidong
Shanghai Jiao Tong University

WeA15
Geometric Optimal Control Theory and Applications (Invited Session)
Chair: Pomet, Jean-Baptiste
INRIA
Co-Chair: Gutman, Per-Olof
Technion
Organizer: Pomet, Jean-Baptiste
INRIA

10:00-10:20 WeA15.1
Bakir, Toufik
Université de Bourgogne Franche-Comté
Bonnard, Bernard
Institut de Mathématiques de Bourgogne
Rouot, Jérémy
EPF: Ecole D'Ingénieur

10:20-10:40 WeA15.2
Jean, Frédéric
ENSTA ParisTech
Maslovskaya, Sofya
INRIA Sophia Antipolis

10:40-11:00 WeA15.3
Caillau, Jean-Baptiste
Université Côte d'Azur, CNRS, INRIA, LJAD
Maslovskaya, Sofya
INRIA Sophia Antipolis
Mensch, Thomas
CGG
Moulinier, Timothée
CGG
Pomet, Jean-Baptiste
INRIA

11:00-11:20 WeA15.4
Minimum Time Optimal Control of Second Order System with Quadratic Drag and State Constraints, pp. 523-528.
Taitler, Ayal
Technion
Ioslovich, Ilya
Technion
Karpas, Erez
Technion
Gutman, Per-Olof
Technion

11:20-11:40 WeA15.5
Discrete-Time Maximum Hands-Off Control with Minimum Switches, pp. 529-534.
Kishida, Masako
National Institute of Informatics
Nagahara, Masaaki
University of Kitakyushu
Chatterjee, Debashish
Indian Institute of Technology, Bombay

11:40-12:00 WeA15.6
A No Infimum-Gap Criterion, pp. 535-540.
Palladino, Michele
GSSI - Gran Sasso Science Institute
Rampazzo, Franco
University of Padova

WeA16
Optimization I (Regular Session)
Chair: Poovendran, Radha
University of Washington
Co-Chair: Dall’Anese, Emiliano
University of Colorado, Boulder

10:00-10:20 WeA16.1
Calafiore, Giuseppe C.
Politecnico di Torino
Novara, Carlo
Politecnico di Torino
Possieri, Corrado
Politecnico di Torino

10:20-10:40 WeA16.2
Fastest Mixing Markov Chain on a Compact Manifold, pp. 547-554.
Biswal, Shibasish
Arizona State University
Elamvazhuthi, Karthik
Arizona State University
Berman, Spring
Arizona State University

10:40-11:00 WeA16.3
A Distributed Algorithm for Online Convex Optimization with Time-Varying Coupled Inequality Constraints, pp. 555-560.
Yi, Xinlei
KTH Royal Institute of Technology
Li, Xiuxian
Nanyang Technological University
Xie, Liuhua
Nanyang Technological University
Johansson, Karl H.
KTH Royal Institute of Technology

11:00-11:20 WeA16.4
UKF-Based Constrained Extremum-Seeking Control with Application to a Large-Bore Gas Engine, pp. 561-566.
Lutz, Max
Kiel University
Freudenthaler, Gerhard
Kiel University
Roduner, Christian Andreas
AVL Software and Functions GmbH
Meurer, Thomas
Kiel University

11:20-11:40 WeA16.5
Dynamic Information Flow Tracking Games for Simultaneous Detection of Multiple Attackers, pp. 567-574.
Sahabandu, Dinuka
University of Washington
Moothedath, Shana
University of Washington
Allen, Joe
Georgia Institute of Technology
Clark, Andrew
Worcester Polytechnic Institute
Bushnell, Linda
University of Washington
Lee, Wenke
Georgia Institute of Technology
Poovendran, Radha
University of Washington

11:40-12:00 WeA16.6
CHANG, CHIN-YAO
National Renewable Energy Laboratory
Colombino, Marcello
McGill University
Cortes, Jorge
University of California, San Diego
Dall’Anese, Emiliano
University of Colorado, Boulder

WeA17
Switched Systems I (Regular Session)
Chair: Trenn, Stephan
University of Groningen
Co-Chair: Fribourg, Laurent
CNRS
10:00-10:20 WeA17.1

Dahia, Helder R. School of Mechanical Engineering, UNICAMP
Deaecto, Grace S. FEM/UNICAMP

10:20-10:40 WeA17.2

Distributed Delay Observer Design for Nonlinear Systems with Output

10:40-11:00 WeA17.3

New Control Design for Switched Linear Time-Invariant Systems under Arbitrary Switching, pp. 593-598.

Lee, Ti-Chung University of Science and Technology
Tan, Ying University of Melbourne
Mareels, Iven IBM

11:00-11:20 WeA17.4

Le Coent, Adrien Aalborg University
Fribourg, Laurent CNRS

11:20-11:40 WeA17.5

Anh, Pham Ky Vietnam National University
Linh, Pham Thi Vietnam National University
Thuan, Do Duc Hanoi University of Science and Technology
Trenn, Stephan University of Groningen

11:40-12:00 WeA17.6

Regaieg, Mohamed Amin University of Amiens
mourd, Kchaou ENIS Sfax
Bosche, Jerome University of Amiens
El Hajjaji, Ahmed University of Picardie-Jules Verne
Chaabane, Mohamed National School of Engineers of Sfax (ENIS)

10:00-10:20 WeA18.1

Ammeh, Leila ENSA, Université Ibn Tofail, Kénitra

Observers for Nonlinear Systems I (Regular Session)

Chair: Trumpf, Jochen Australian National University
Co-Chair: Gehan, Olivier ENSICAEN

10:20-10:40 WeA18.2

Coutinho, Daniel F. Universidade Federal de Santa Catarina
de Melo Schons, Silvane C Universidade Federal de Santa Catarina - Université Libre de Bruxelles
Kinnaert, Michel Université Libre de Bruxelles
de Souza, Carlos E. LNCC

10:40-11:00 WeA18.3

Observer and First-Order Low-Pass Filter Based Attitude Estimation for Rigid Bodies Subject to External Acceleration, pp. 629-634.

Bonargent, Tristan Normandie University UNICAEN, ENSICAEN
Menard, Tomas University of Caen
Pigeon, Eric University of Caen
Gehan, Olivier ENSICAEN

11:00-11:20 WeA18.4

Discrete Update Pose Filter on the Special Euclidean Group SE(3), pp. 635-641.

Zamani, Mohammad DSTG
Trumpf, Jochen Australian National University

11:20-11:40 WeA18.5

Surroop, Dilshad Mines Paris Tech
Martin, Philippe Mines Paris Tech, PSL Research University
Combes, Pascal Schneider Electric
Rouchon, Pierre Mines ParisTech

11:40-12:00 WeA18.6

Pyrkin, Anton ITMO University
Bobtsov, Alexey ITMO University
Vedyakov, Alexey ITMO University
Ortega, Romeo LSS-Supelec
Vediakova, Anastasiia Saint Petersburg State University
Sinetrova, Madina ITMO University

10:00-10:20 WeA19.1

Advances in Nonlinear Filtering and Stochastic Control with Partial Information I (Invited Session)

Chair: Mehta, Prashant G. University of Illinois, Urbana Champaign
Co-Chair: Yuksel, Serdar Queen's University
Organizer: Mehta, Prashant G. University of Illinois, Urbana Champaign
Organizer: Yuksel, Serdar Queen's University
On Weak Feller Continuity Properties of Non-Linear Filters (I), pp. 654-659.
Kara, Ali Devran
Saldi, Naci
Yuksel, Serdar

10:20-10:40 WeA19.2
Proximal Recursion for the Wonham Filter (I), pp. 660-665.
Halder, Abhishek
Georgiou, Tryphon T.

10:40-11:00 WeA19.3
Gauge Freedom within the Class of Linear Feedback Particle Filters (I), pp. 666-671.
Abedi, Ehsan
Surace, Simone Carlo

11:00-11:20 WeA19.4
LQ Non-Gaussian Regulator with Markovian Control, pp. 672-677.
D’Angelo, Massimiliano
Battilotti, Stefano
Cacace, Filippo
Germani, Alfredo
Sinopoli, Bruno

11:20-11:40 WeA19.5
Huang, Minyi

11:40-12:00 WeA19.6
Optimal Scheduling of Multiple Sensors Which Transmit Measurements Over a Dynamic Lossy Network (I), pp. 684-689.
Carroll, Johnson
Hamedi, Hassan
Arapostathis, Ari

12:00-12:20 WeA19
Event-Triggered and Self-Triggered Control Based on Optimization Methods (Invited Session)
Chair: Johansson, Karl H.
Co-Chair: Mohajerin Esfahani, Peyman
Organizer: Heemels, W.P.M.H.
Organizer: Hirche, Sandra
Organizer: Johansson, Karl H.

10:00-10:20 WeA20.1
Yang, Yongliang
Vamvoudakis, Kyriakos G.
Modares, Hamidreza
He, Wei
Yin, Yi-Xin

10:20-10:40 WeA20.2
A Linear Programming Approach to Design Online Triggering Mechanisms for Robust MPC (I), pp. 698-703.
Sharifi Kollarjani, Arman
Bregman, Sander Christian
Mohajerin Esfahani, Peyman
Keviczky, Tamas

10:40-11:00 WeA20.3
Antunes, Duarte
Balaghi I., M. Hadi

11:00-11:20 WeA20.4
Predictive Control over a Dynamical Token Bucket Network, pp. 710-715.
Wildhagen, Stefan
Muller, Matthias A.
Allgöwer, Frank

11:20-11:40 WeA20.5
Liu, Changxin
Li, Huiping
Xu, Demin

11:40-12:00 WeA20.6
Miguel-Escrig, Oscar
Romero, Julio Ariel

12:00-12:20 WeA20
Network Analysis and Control I (Regular Session)
Chair: Siambi, Milad
Co-Chair: Chapman, Airlie

10:00-10:20 WeA21.1
Optimization of TCP Algorithm for Wired-Wireless Channels Based on Connection State Estimation, pp. 728-733.
Borisov, Andrey
Bosov, Alexey
Miller, Gregory
Stefanovich, Alexei

10:20-10:40 WeA21.2
Siambi, Milad
Jadbabaie, Ali

10:40-11:00 WeA21.3
Rigidity in Non-Euclidean Frameworks for Formation Control:
The Manhattan Metric, pp. 740-745.
Burke, Declan
University of Melbourne
Chapman, Airrie
University of Melbourne
Schoof, Eric
University of Washington
11:00-11:20
WeA21.4

Time-Scale Separation on Networks for Multi-City Epidemics, pp. 746-751.
Lewien, Patrick
University of Melbourne
Chapman, Airrie
University of Melbourne
11:20-11:40
WeA21.5

Urata, Kengo
Tokyo Institute of Technology
Ishizaki, Takayuki
Tokyo Institute of Technology
Imura, Jun-ichi
Tokyo Institute of Technology
11:40-12:00
WeA21.6

Dynamics Concentration of Large-Scale Tightly-Connected Networks, pp. 758-763.
Min, Hancheng
Johns Hopkins University
Mallada, Enrique
Johns Hopkins University
12:00
WeA22

Identification I (Regular Session)
Chair: Lindquist, Anders
KTH Royal Institute of Technology
Co-Chair: Lopes dos Santos, P.
Unviersidade do Porto
10:00-10:20
WeA22.1

Cui, Yufang
Shanghai Jiao Tong University
Lindquist, Anders
Shanghai Jiao Tong University
10:20-10:40
WeA22.2

A Dynamic Mode Decomposition Approach with Hankel Block to Forecast Multi-Channel Temporal Series, pp. 771-776.
Vasconcelos Filho, Enio
Cister Research Centre in Real-Time &Embedded Computing Systems,
Lopes dos Santos, P.
Unviersidade do Porto
10:40-11:00
WeA22.3

Niedzwiecki, Maciej
Gdansk University of Technology
Ciolek, Marcin
Gdansk University of Technology, Faculty of Electronics, Telecom
Gancza, Artur
Gdansk University of Technology, Faculty of Electronics Telecomm
11:00-11:20
WeA22.4

Computation of Orders of a Commensurable Fractional Order Model, pp. 784-790.
Stark, Oliver
Karlsruhe Institute of Technology
Kupper, Martin
Karlsruhe Institute of Technology
Krebs, Stefan
Karlsruhe Institute of Technology
Hohmann, Soeren
Karlsruhe Institute of Technology
11:20-11:40
WeA22.5

Identification for Switched FIR Linear Systems Using Binary

Measurements, pp. 791-796.
Auber, Romain
Université de Caen
Pouliquen, Mathieu
Université de Caen
GOUDJIL, Abdelhak
University of Caen Normandy
Pigeon, Eric
University of CAEN
Gehan, Olivier
University of Caen
Menard, Tomas
Normandie Univ, UNICAEN,
ENSICAEN, LAC, 14000 Caen,
France
11:40-12:00
WeA22.6

Asymptotic Analysis of Recursive (Particle) Maximum Likelihood Estimation in Non-Linear State-Space Models, pp. 797-802.
Tadic, Vladislav
University of Bristol
Doucet, Arnaud
University of Oxford
12:00
WeA23

Learning-Based Controller Synthesis (Invited Session)
Chair: Schoellig, Angela P
University of Toronto
Co-Chair: Trimpe, Sebastian
Max Planck Institute for Intelligent Systems
Organizer: Schoellig, Angela P
University of Toronto
Organizer: Trimpe, Sebastian
Max Planck Institute for Intelligent Systems
Organizer: Zeilinger, Melanie N.
ETH Zurich
Organizer: Muller, Matthias A.
Leibniz University Hannover
10:00-10:20
WeA23.1

Deep Reinforcement Learning with Feedback-Based Exploration (I), pp. 803-808.
Scholten, Jan Jelmer
Delft University of Technology
Wout, Daan
Delft University of Technology
Celemim, Carlos
Delft University of Technology
Kober, Jens
Delft University of Technology
10:20-10:40
WeA23.2

Inverse Learning for Human-Adaptive Motion Planning (I), pp. 809-815.
Menner, Marcel
ETH Zurich
Bemtorp, Karl
Mitsubishi Electric Research Labs
Zeilinger, Melanie N.
ETH Zurich
Di Cairano, Stefano
Mitsubishi Electric Research Labs
10:40-11:00
WeA23.3

A Data-Driven Policy Iteration Scheme Based on Linear Programming (I), pp. 816-821.
Banjac, Goran
ETH Zurich
Lygeros, John
ETH Zurich
11:00-11:20
WeA23.4

Bayesian Kernel-Based Linear Control Design (I), pp. 822-827.
Scampicchio, Anna
University of Padova
Chiuso, Alessandro
University of Padova
Formentin, Simone
Politecnico di Milano
Pillonetto, Gianluigi
University of Padova
11:20-11:40
WeA23.5

Closed-Loop Model Selection for Kernel-Based Models Using Bayesian Optimization (I), pp. 828-834.
WeA24 Learning I (Regular Session) Hermès
Chair: Darvianakis, Georgios Co-Chair: Shim, Hyungbo
ABB Corporate Research Center Seoul National University
10:00-10:20 WeA24.1
Approximate Explicit Model Predictive Controller Using
Gaussian Processes, pp. 841-846.
Binder, Matthias ETH Zurich
Darvianakis, Georgios ABB Corporate Research Center
Eichler, Annika DESY
Lygeros, John ETH Zurich
10:20-10:40 WeA24.2
On Improving the Robustness of Reinforcement Learning-
Based Controllers Using Disturbance Observer, pp. 847-852.
Kim, Jeong Woo Seoul National University
Shim, Hyungbo Seoul National University
Yang, Insoo Seoul National University
10:40-11:00 WeA24.3
A Predictive Deep Learning Approach to Output Regulation:
The Case of Collaborative Pursuit Evasion, pp. 853-859.
Shivam, Shashwat Georgia Institute of Technology
Kanellopoulos, Aris Georgia Institute of Technology
Vamvoudakis, Kyriakos G. Georgia Institute of Technology
Wardi, Yorai Georgia Institute of Technology
11:00-11:20 WeA24.4
Learning Feature Maps of the Koopman Operator: A
Subspace Viewpoint, pp. 860-866.
Lian, Yingzhao EPFL
Jones, Colin N. EPFL
11:20-11:40 WeA24.5
Combinatorial Bandits for Sequential Learning in Colonel
Blotto Games, pp. 867-872.
Vu, Dong Quan Nokia Bell Labs
Loiseau, Patrick INRIA
Silva, Alonso Signal and Information
Technologies, Safran Tech
11:40-12:00 WeA24.6
On Persistency of Excitation and Formulas for Data-Driven
Control, pp. 873-878.
De Persis, Claudio University of Groningen
Tesi, Pietro University of Firenze

A Linear Constrained Integral Feedback for a Class of Reaction Systems with Absolute Concentration Robustness (I), pp. 945-950.

Cappelletti, Daniele ETH Zurich
Gupta, Ankik ETH Zurich
Khammash, Mustafa H. ETH Zurich

Optimal Parameter Tuning of Feedback Controllers with Application to Biomolecular Antithetic Integral Control, pp. 951-957.

Fil, Maurice Swiss Federal Institute of Technology in Zurich
Khammash, Mustafa H. ETH Zurich

Biomolecular Stabilisation Near the Unstable Equilibrium of a Biological System, pp. 958-964.

Cuba Samaniego, Christian University of California, Riverside
DeLateur, Nicholas Massachusetts Institute of Technology
Giordano, Giulia Delft University of Technology
Franco, Elisa University of California, Los Angeles

Ratiometric Control for Differentiation of Cell Populations Endowed with Synthetic Toggle Switches (I), pp. 927-932.

Salzano, Davide University of Napoli Federico II
Fiore, Davide University of Napoli Federico II
Fiore, Davide University of Napoli Federico II

Feedback Control Promotes Synchronisation of the Cell-Cycle across a Population of Yeast Cells (I), pp. 933-938.

Perrino, Giannisone Telethon Institute of Genetics and Medicine
Fiore, Davide University of Napoli Federico II
Napolitano, Sara Telethon Institute of Genetics and Medicine
Galdi, Francesca Telethon Institute of Genetics and Medicine
La Regina, Antonella Telethon Institute of Genetics and Medicine
Fiore, Davide University of Napoli Federico II

Moment-Based Analysis of Biochemical Networks in a Heterogeneous Population of Communicating Cells (I), pp. 939-944.

Gonzales, David Max Planck Institute of Molecular Cell Biology and Genetics
Zechnner, Christoph Max Planck Institute of Molecular Cell Biology and Genetics

A Systematic Framework for Biomolecular System Identification (I)*.

Menolascina, Filippo University of Edinburgh

Biocentrol Experiments: How to Start Your Own Lab! (I)*.

di Bernardo, Diego Telethon Institute of Genetics and Medicine

14:00-14:20

Control Systems for Biology: Methodologies and Applications (Invited Session)

Chair: di Bernardo, Diego Telethon Institute of Genetics and Medicine
Co-Chair: Khammash, Mustafa H.
Organizer: di Bernardo, Mario University of Napoli Federico II
Organizer: di Bernardo, Diego Telethon Institute of Genetics and Medicine
Organizer: Khammash, Mustafa H.

15:00-15:20

Discrete-Time Adaptive Regulation of Scalar Systems with Uncertain Upper-Bounded Input Delay, pp. 976-982.

Abidi, Khalid Newcastle University
Soo, Hang Jian None
Postlethwaite, Ian Newcastle University

15:00-15:20

Estimator-Based Output-Feedback Stabilization of Linear Multi-Delay Systems Using SOS, pp. 983-988.

Wu, Shuangshuang Yanshan University

Trenn, Stephan
University of Groningen

Unger, Benjamin
TU Berlin

Torsional Vibration Suppression with Boundary Impulsive Conditions in Rotary Drilling System, pp. 995-1000.

TOUMI, Samir
Polytechnic School of Tunisia

Beji, Lotfi
University of Evry

Mayeh, Rhouma
Polytechnic School of Tunisia

Adaptive Control II (Regular Session)

WeB03
Méditerranée 5

Chair: Baldi, Simone
Delft University of Technology

Co-Chair: Duffaut Espinosa, Luis Augusto
University of Vermont

Measures and LMIs for Adaptive Control Validation, pp. 1001-1006.

Wagner, Daniel
Czech Technical University in Prague

Henrion, Didier
LAAS-CNRS

Hromčík, Martin
Czech Technical University, FEE

Adaptive Optimal Control Via Continuous-Time Q-Learning for Unknown Nonlinear Affine Systems, pp. 1007-1012.

Chen, Anthony Siming
University of Bristol

Herrmann, Guido
University of Manchester

Combining Learning and Model Based Multivariable Control, pp. 1013-1018.

GUGGILAM, SUBBARAO
Old Dominion University

VENKATESH

Gray, W. Steven
Old Dominion University

Duffaut Espinosa, Luis Augusto
University of Vermont

Model Based Adaptive Control for a Soft Robotic Manipulator, pp. 1019-1024.

Franco, Enrico
Imperial College London

Garriga-Casanovas, Amal
Imperial College London

Rodríguez y Baena, Ferdinando
Imperial College London

Astolfi, Alessandro
Imperial College & University of Rome

Adaptive Tracking Control of Nonlinear Time-Varying Systems with Unknown Control Coefficients and Unknown Time-Varying Parameters, pp. 1025-1030.

Zhou, Jing
University of Agder

Approach

Linear Multi-Agent System: A Satisfaction Equilibrium

Decentralized Control for Guaranteed Individual Costs in a Right Sizing of Cloud Computing Systems with Data Locality

An Optimization Approach to Load Balancing, Scheduling and Leader-Follower Consensus of Linear Multi-Agent Systems

14:40-14:40

pp. 1114

14:20-14:40

Low-Complexity Robust Decentralized MPC: A Foundational Algorithm for Constrained Coalitional Control (I), pp. 1089-1095.

15:00-15:20

A Coalitional Control Scheme with Topology-Switchings Convexity Guarantees, pp. 1096-1101.

Optimal Linear Exponential Quadratic Gaussian Estimation with Intermittent Observations, pp. 1132-1137.

Control Technique for Synchronization of Selected Nodes in Directed Networks, pp. 1138-1143.

WeB07 (Regular Session)

Control of Networks (Regular Session)

Chair: Paganini, Fernando
Co-Chair: Frasca, Mattia

14:40-14:50

14:00-14:20

Leader-Follower Consensus of Linear Multi-Agent Systems with Input Saturation, pp. 1108-1113.

15:00-15:20

14:20-14:40

14:40-15:00

15:00-15:20

14:40-14:40

On Distributed High-Gain Adaptive Stabilization (I), pp. 1083-1088.

WeB05.2

WeB05.4

Té Côte d’Azur, INRIA

Iori, Tomoyuki
Ohtsuka, Toshiyuki

Kyoto University
Kyoto University

Sun, Zhiyong
Rantzer, Anders
Li, Zhongkui
Robertsson, Anders

Lund University
Lund University
Peking University
LTH, Lund University

WeB05.3

15:00-15:20

WeB05.5

Low-Complexity Robust Decentralized MPC: A Foundational Algorithm for Constrained Coalitional Control (I), pp. 1089-1095.

WeB05.6

WeB06.1

Convexity Guarantees, pp. 1096-1101.

WeB06.2

WeB06.3

WeB06.4

WeB06.5

WeB06.6

Chanfreut, Paula
Maestre, J.M.
Muros, Francisco Javier
Camacho, Eduardo F.

University of Seville
University of Seville
University of Seville
University of Seville

WeB06.7

WeB07.1

WeB07.2

WeB07.3

WeB07.4

van Schuppen, Jan H.
Charalambous, Charalambos

Van Schuppen Control Research
University of Cyprus D.

WeB06.8

16:00-16:20

WeB06.9

WeB07.5

WeB07.6

WeB07.7

17:00-17:20

18:00-18:20

19:00-19:20
15:20-15:40 WeB07.5

Angelico, Bruno Universidade de São Paulo
Brugnoni, Mateus Mussi Universidade de São Paulo
das Neves, Gabriel Universidade de São Paulo

15:40-16:00 WeB07.6

Mitikiri, Yujendra University of Florida
Mohseni, Kamran University of Florida

WeB08 Estimation and Control of PDE Systems II (Invited Session)

Chair: Demetriou, Michael A. Worcester Polytechnic Institute
Co-Chair: Fahroo, Fariba AFOSR
Organizer: Demetriou, Michael A. Worcester Polytechnic Institute
Organizer: Fahroo, Fariba AFOSR
Organizer: Le Gorrec, Yann Ensimm, Femto-St / As2m

14:00-14:20 WeB08.1

de Andrade, Gustavo Artur Universidade Federal de Santa Catarina
Vazquez, Rafael University of Seville
Pagano, Daniel Juan Federal University of Santa Catarina
Mascheroni, Jose Maria Alkimat Tecnologia Ltda

14:20-14:40 WeB08.2

Sensor Location for Parameter Estimation of Spatiotemporal Systems with Correlated Observations (I), pp. 1189-1194.

Ucinski, Dariusz University of Zielona Gora
Patan, Maciej University of Zielona Gora

14:40-15:00 WeB08.3

Laser Sintering Control for Metal Additive Manufacturing by PDE Backstepping (I), pp. 1195-1200.

Koga, Shumon University of California, San Diego
Krstic, Miroslav University of California, San Diego
Beaman, Joseph J. University of Texas, Austin

15:00-15:20 WeB08.4

Sampled-Data Observer for 2D Navier-Stokes Equation (I), pp. 1201-1206.

Kang, Wen University of Science and Technology Beijing
Fridman, Emilia Tel-Aviv University
Zhuk, Sergiy IBM

15:20-15:40 WeB08.5

Model-Based Networked Control of Spatially-Distributed Processes with Event-Triggered Parameter Re-Identification (I), pp. 1207-1212.

Zedan, Amr University of California Davis
El-Farra, Nael H. University of California, Davis

15:40-16:00 WeB08.6

Combined Sequential Mobile Sensing Agent Evacuation and State Reconstruction in Contaminated Spatial Fields (I), pp. 1213-1218.

Demetriou, Michael A. Worcester Polytechnic Institute

WeB09 Mean Field Games II (Regular Session)

Chair: Hajek, Bruce UIUC
Co-Chair: Huang, Minyi Carleton University

14:00-14:20 WeB09.1

On Non-Unique Solutions in Mean Field Games, pp. 1219-1224.

Hajek, Bruce UIUC
Livesay, Michael University of Illinois

14:40-15:00 WeB09.3

Decentralized Adaptive Optimal Control for Massive Multi-Agent Systems Using Mean Field Game with Self-Organizing Neural Networks, pp. 1225-1230.

Zhou, Zejian University of Nevada, Reno
Xu, Hao University of Nevada, Reno

14:40-15:00 WeB09.4

Linearly-Solvable Mean-Field Approximation for Multi-Team Road Traffic Games, pp. 1243-1248.

Pedram, Ali Reza University of Texas, Austin
Tanaka, Takashi University of Texas, Austin

15:00-15:20 WeB09.5

Bagagiolo, Fabio University of Trento
Maggistro, Rosario Università Ca’ Foscari Venezia
Pesenti, Raffaele University of Venice - Ca’ Foscari

WeB10 Orchestrating Movement of Smart Vehicles in Smart Cities (Invited Session)

Chair: Malikopoulos, Andreas A. University of Delaware
Co-Chair: Su, Rong Nanyang Technological University
Organizer: Vahidi, Ardalan Clemson University
Organizer: Su, Rong Nanyang Technological University

14:00-14:20 WeB10.1

Zhang, Yicheng Nanyang Technological University
Chen, Qixing Nanyang Technological University
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:20-14:40</td>
<td>WeB10.2</td>
<td>Optimal Path Planning for Connected and Automated Vehicles at Urban Intersections (I), pp. 1261-1266.</td>
<td>Malikopoulos, Andreas A.</td>
<td>University of Delaware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zhao, Liuhui</td>
<td>University of Delaware</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>WeB10.3</td>
<td>Distributed Ledger Technology for Smart Mobility: Variable Delay Models (I), pp. 1267-1272.</td>
<td>Cullen, Andrew</td>
<td>Imperial College London</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ferraro, Pietro</td>
<td>University College Dublin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>King, Christopher</td>
<td>Northeastern University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shorten, Robert</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>WeB10.4</td>
<td>Stochastic Modeling and Optimal Control for Automated Overtaking (I), pp. 1273-1278.</td>
<td>Gao, Yulong</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jiang, Frank J.</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Johansson, Karl H.</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xie, Lihua</td>
<td>Nanyang Tech. University</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>WeB10.5</td>
<td>Real-Time Ecological Velocity Planning for Plug-In Hybrid Vehicles with Partial Communication to Traffic Lights (I), pp. 1279-1285.</td>
<td>Bae, Sangjae</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Choi, Yongkeun</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kim, Yeojun</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guanetti, Jacopo</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Borrelli, Francesco</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moura, Scott</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>WeB10.6</td>
<td>Reinforcement Learning Augmented Optimization for Smart Mobility (I), pp. 1286-1292.</td>
<td>Overko, Roman</td>
<td>University College Dublin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordóñez-Hurtado, Rodrigo H.</td>
<td>IBM Research - Ireland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zhuk, Sergiy</td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shorten, Robert</td>
<td>University College Dublin</td>
</tr>
<tr>
<td>14:00-14:20</td>
<td>WeB11.1</td>
<td>Markov Processes I (Regular Session)</td>
<td>Chair: Karlsson, Johan</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Co-Chair: Ornik, Melkior</td>
<td>University of Illinois, Urbana</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>WeB11.2</td>
<td>Stochastic Primal-Dual Methods for Learning Mixture Policies in MDPs, pp. 1293-1300.</td>
<td>Badiei Khuzani, Masoud</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vasudevan, Varun</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ren, Hongyi</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XXing, Lei</td>
<td>Stanford University</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>WeB11.3</td>
<td>Scalable Filtering of Large Graph-Coupled Hidden Markov Models, pp. 1307-1314.</td>
<td>Haksar, Ravi N.</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lorenzetti, Joseph</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schwager, Mac</td>
<td>Stanford University</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>WeB11.4</td>
<td>Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources, pp. 1315-1322.</td>
<td>Haksar, Ravi N.</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solowjow, Friedrich</td>
<td>Max Planck Institute for Intelligent Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimpe, Sebastian</td>
<td>Max Planck Institute for Intelligent Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schwager, Mac</td>
<td>Stanford University</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>WeB11.5</td>
<td>Optimal Deceptive and Reference Policies for Supervisory Control, pp. 1323-1330.</td>
<td>Karabag, Mustafa O.</td>
<td>University of Texas, Austin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ornik, Melkior</td>
<td>University of Illinois, Urbana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topcu, Ufuk</td>
<td>University of Texas, Austin</td>
</tr>
<tr>
<td>16:00-16:20</td>
<td>WeB11.6</td>
<td>Estimating Ensemble Flows on a Hidden Markov Chain, pp. 1331-1338.</td>
<td>Haasler, Isabel</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ringh, Axel</td>
<td>The Hong Kong University of Science and Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chen, Yongxin</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Karlsson, Johan</td>
<td>KTH Royal Institute of Technology</td>
</tr>
<tr>
<td>14:00-14:20</td>
<td>WeB12.1</td>
<td>Quantum Information and Control (Regular Session)</td>
<td>Chair: Sarlette, Alain</td>
<td>INRIA Paris</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Co-Chair: Rouchon, Pierre</td>
<td>Mines ParisTech</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>WeB12.2</td>
<td>Effect of Quantum Mechanical Global Phase Factor on Error versus Sensitivity Limitation in Quantum Routing, pp. 1339-1344.</td>
<td>Jonckheere, Edmond</td>
<td>University of Southern California</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schirmer, Sophie</td>
<td>Swansea University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Langbein, Frank C.</td>
<td>Cardiff University</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>WeB12.3</td>
<td>Active versus Passive Coherent Equalization of Passive Linear Quantum Systems, pp. 1345-1350.</td>
<td>Ugrinovskii, Valery</td>
<td>University of New South Wales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>James, Matthew R.</td>
<td>Australian National University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nakao, Hiroya</td>
<td>Tokyo Institute of Technology</td>
</tr>
</tbody>
</table>
15:00-15:20 WeB12.4
Maclel Neto, Ulisses Alves Amazônia Azul Technologies of Defense
Pereira da Silva, Paulo Sergio University de Sao Paulo
Beauchard, Karine CNRS, CMLS, Ecole Polytechnique
Rouchon, Pierre Mines ParisTech

15:20-15:40 WeB12.5
A Palette of Approaches for Adiabatic Elimination in Bipartite Open Quantum Systems with Hamiltonian Dynamics on Target, pp. 1362-1368.
Forni, Paolo Mines ParisTech & INRIA (QUANTIC)
Launay, Timothée Mines ParisTech
Sarlette, Alain INRIA Paris
Rouchon, Pierre Mines ParisTech

15:40-16:00 WeB12.6
Minimizing Decoherence on Target in Bipartite Open Quantum Systems, pp. 1369-1376.
Forni, Paolo Mines ParisTech & INRIA (QUANTIC)
Sarlette, Alain INRIA Paris

WeB13 Galliéni 4
Predictive Control for Linear Systems II (Regular Session)
Chair: Allgöwer, Frank University of Stuttgart
Co-Chair: de Jager, Bram Technische Universiteit Eindhoven

14:00-14:20 WeB13.1
Dual Adaptive MPC for Output Tracking of Linear Systems, pp. 1377-1382.
Soloperto, Raffaele University of Stuttgart
Koehler, Johannes University of Stuttgart
Muller, Matthias A. Leibniz University Hannover
Allgöwer, Frank University of Stuttgart

14:20-14:40 WeB13.2
Linear Robust Adaptive Model Predictive Control: Computational Complexity and Conservatism, pp. 1383-1388.
Koehler, Johannes University of Stuttgart
Andina, Elisa Universita Di Bologna - M.Sc. Student
Soloperto, Raffaele Raffaele Soloperto
Muller, Matthias A. Leibniz University Hannover
Allgöwer, Frank University of Stuttgart

14:40-15:00 WeB13.3
Instant MPC for Linear Systems and Dissipativity-Based Stability Analysis, pp. 1389-1394.
Yoshida, Keisuke Keio University
Inoue, Masaki Keio University
Hatanaka, Takeshi Tokyo Institute of Technology

15:00-15:20 WeB13.4
Laine, Forrest, J. University of California, Berkeley
Tomlin, Claire J. University of California, Berkeley

15:20-15:40 WeB13.5
Adversarial Model Predictive Control Via Second-Order Cone Programming, pp. 1403-1409.
Guthrie, James Johns Hopkins University
Mallada, Enrique Johns Hopkins University

15:40-16:00 WeB13.6
A System-Theoretic Approach to Construct a Banded Null Basis to Efficiently Solve MPC-Based QP Problems, pp. 1410-1415.
Yang, Jiaheng Eindhoven University of Technology
Meijer, Tomas Jesse Eindhoven University of Technology
Dolk, Victor Sebastian Eindhoven University of Technology
de Jager, Bram Eindhoven University of Technology
Heemels, W.P.M.H. Eindhoven University of Technology

WeB14 Galliéni 7
Lyapunov Methods II (Regular Session)
Chair: Normand-Cyrot, Dorotheé CNRS
Co-Chair: Poonawala, Hasan University of Kentucky A.

14:00-14:20 WeB14.1
Magnetic Force Modelling and Nonlinear Switched Control of an Electromagnetic Actuator, pp. 1416-1421.
Deschaux, Flavien LAAS CNRS
Gouaisbaut, Frederic University of Toulouse, LAAS CNRS
Ariba, Yassine Icam

14:20-14:40 WeB14.2
Control-Lyapunov and Control-BARRIER Functions Based Quadratic Program for Spatio-Temporal Specifications, pp. 1422-1429.
Garg, Kunal University of Michigan-Ann Arbor
Panagou, Dimitra University of Michigan, Ann Arbor

14:40-15:00 WeB14.3
Discrete Port-Controlled Hamiltonian Dynamics and Average Passivation, pp. 1430-1435.
Moreschini, Alessio Sapienza University of Rome
Mattoni, Mattia University of Rome La Sapienza
Monaco, Salvatore University of Roma La Sapienza
Normand-Cyrot, Dorotheé CNRS

15:00-15:20 WeB14.4
Switched Motorized and Functional Electrical Stimulation Cycling Controllers for Power Tracking, pp. 1436-1441.
Chang, Chen-Hao Syracuse University
Duenas, Victor H Syracuse University

15:20-15:40 WeB14.5
Stability Analysis Via Refinement of Piece-Wise Linear Lyapunov Functions, pp. 1442-1447.
Poonawala, Hasan A. University of Kentucky

15:40-16:00 WeB14.6
A Control Lyapunov Perspective on Episodic Learning Via
Optimization II

WeB15 Optimization Conditions for Control Problems I (Invited Session)

Chair: Frankowska, Helene
Co-Chair: Chittaro, Francesca
Organizer: Frankowska, Helene
Organizer: Poggiolini, Laura

14:00-14:20 WeB15.1
On Second-Order Necessary Conditions in Optimal Control of Problems with Mixed Final Point Constraints (I), pp. 1456-1461.
Frankowska, Helene
CNRS and Sorbonne University, Campus Pierre Et Marie Curie

14:20-14:40 WeB15.2
Constrained Bang-Bang-Singular Extremals (I), pp. 1462-1467.
Poggiolini, Laura
University of Firenze
Stefani, Gianna
University of Firenze

14:40-15:00 WeB15.3
Some Results on Second Order Controllability Conditions (I), pp. 1468-1473.
Soravia, Pierpaolo
University of Padova

15:00-15:20 WeB15.4
Motta, Monica
University of Padua, Italy
Aronna, María Soledad
Fundação Getulio Vargas
Rampazzo, Franco
University of Padova

15:20-15:40 WeB15.5
Bayen, Térence
Université de Montpellier
Pfeiffer, Laurent
Graz University

15:40-16:00 WeB15.6
Lee, Donggun
University of California, Berkeley
Tomlin, Claire J.
University of California, Berkeley

WeB16 Optimization II (Regular Session)

Chair: Nedich, Angelia
Co-Chair: Karlsson, Niklas

14:00-14:20 WeB16.1

Atta, Khalid
Luleå University of Technology
Guay, Martin
Queens University
Lucchese, Riccardo
LTU Luleå University of Technology

14:20-14:40 WeB16.2
Acceleration in First Order Quasi-Strongly Convex Optimization by ODE Discretization, pp. 1501-1506.
Zhang, Jingzhao
MIT
Sra, Suvrit
MIT
Jadbabaie, Ali
MIT

14:40-15:00 WeB16.3
Nedich, Angelia
Arizona State University
Necoara, Ion
University Politehnica Bucharest

15:00-15:20 WeB16.4
Adaptive Optimization and Control in Online Advertising, pp. 1513-1518.
Karlsson, Niklas
Verizon Media

15:20-15:40 WeB16.5
Nested Distributed Gradient Methods with Adaptive Quantized Communication, pp. 1519-1525.
Berahas, Albert S.
Lehigh University
Iakovidou, Charikleia
Northwestern University
Wei, Ermin
Northwestern University

15:40-16:00 WeB16.6
Distributionally Robust Portfolio Optimization, pp. 1526-1531.
Bardakci, Ibrahim Ekrem
Pennsylvania State University
Lagoa, Constantino M.
Pennsylvania State University

WeB17 Switched Systems II (Regular Session)

Chair: Sznaier, Mario
Co-Chair: Ozay, Necmiye

14:00-14:20 WeB17.1
Breschi, Valentina
Politecnico di Milano
Piga, Dario
University of Applied Sciences and Arts of Southern Switzerland
Bemporad, Alberto
IMT Institute for Advanced Studies

14:20-14:40 WeB17.2
Kirches, Christian
Technical University of Braunschweig
Kostina, Professor Dr.
Heidelberg University
Ekaterina A.
IWR Heidelberg
Meyer, Andreas
Schlöder, Matthias
Heidelberg University
An Exponential Stability Result for a Class of Linear Switched Systems and Its Application, pp. 1551-1556.

Liu, Tao Shenzhen Research Institute, the Chinese University of Hong Kong
Lee, Ti-Chung University of Science and Technology
Huang, Jie The Chinese University of Hong Kong

Global Exponential Stabilization of Language Constrained Switched Linear Discrete-Time System Based on the S-Procedure Approach, pp. 1565-1570.

Song, Yang Shanghai University
Jin, Yunyun Shanghai University
Wang, Yan Jiangnan University
Yang, Taicheng University of Sussex

Observers for Nonlinear Systems II (Regular Session)

Chair: Ferrara, Antonella University of Pavia
Co-Chair: Rapaport, Alain U. Montpellier, INRA, Montpellier SupAgro

A Multi Observers Approach When Observability Index Is Higher Than the State Dimension - a Case Study -, pp. 1571-1576.

Haidar, Ihab ENSEA
Barbot, Jean Pierre ENSEA
Rapaport, Alain U. Montpellier, INRA, Montpellier SupAgro

Ariou, Hichem Evry Val d'Essonne University
Ichalal, Dalil Université d'Evry Val d'Essonne, IBISC Lab
Nehouaia, Lamri Evry University
Mammar, Said Université d'Evry IBISC

Higher Order Sliding Mode Observers in Power Grids with Traditional and Renewable Sources, pp. 1583-1588.

Rinaldi, Gianmario University of Pavia
Menon, Prathyush P University of Exeter
Edwards, Christopher University of Exeter
Ferrara, Antonella University of Pavia

Pylorof, Dimitrios US Army Research Laboratory
Bakolas, Efstatios University of Texas, Austin
Chan, Kevin US Army Research Laboratory

State Observation of a Specific Class of Unknown Nonlinear SISO Systems Using Linear Kalman Filtering, pp. 1595-1600.

Amokrane, Fawzia Institut FEMTO-ST
Piat, Emmanuel Institut FEMTO-ST
Abadie, Joël Institut FEMTO-ST
Drouot, Adrien Institut FEMTO-ST
Escareño, Juan ENSIL-ENSCI @ University of Limoges

Safety Control with Preview Automaton, pp. 1557-1564.

Liu, Zexiang University of Michigan
Ozay, Necmiye University of Michigan

Advances in Nonlinear Filtering and Stochastic Control with Partial Information II (Invited Session)

Chair: Yuksel, Serdar Queen's University
Co-Chair: Mehta, Prashant G. University of Illinois, Urbana Champaign
Organizer: Mehta, Prashant G. University of Illinois, Urbana Champaign
Organizer: Yuksel, Serdar Queen's University

Kim, Jin Won University of Illinois, Urbana Champaign
Mehta, Prashant G. University of Illinois, Urbana Champaign
Meyn, Sean P. University of Florida

Belief Estimation by Agents in Major Minor LQG Mean Field Games (I), pp. 1615-1622.

Firoozi, Dena McGill University
Caines, Peter E. McGill University

McDonald, Curtis, James Queen's University
Yuksel, Serdar Queen's University

Subramanian, Jayakumar McGill University
Mahajan, Aditya McGill University

Feedback Particle Filter with Correlated Noises, pp. 1637-1643.

Luo, Xue Beihang University
Boven University

Control Systems

On Integral Input-To-State Stability of Event-Triggered Interconnected Systems

15:20-15:40

WeB20

Event-Triggered Control Based on Lyapunov Methods (Invited Session)

Chair: Noroozi, Navid
Otto Von Guericke Universitat Magdeburg

Co-Chair: Heemels, W.P.M.H.
Eindhoven University of Technology

Organizer: Heemels, W.P.M.H.
Eindhoven University of Technology

Organizer: Hirche, Sandra
Technische Universität München

Organizer: Johansson, Karl H.
KTH Royal Institute of Technology

14:00-14:20

Wang, Wei
University of Melbourne

Nesic, Dragan
University of Melbourne

Postoyan, Romain
CNRS, CRAN, Université de Lorraine

Shames, Iman
University of Melbourne

Heemels, W.P.M.H.
Eindhoven University of Technology

14:20-14:40

Periodic Event-Triggered Control with a Relaxed Triggering Condition (I), pp. 1656-1661.

Szymanek, Aleksandra
Delft University of Technology

de Albuquerque Gleizer, Gabriel
Delft University of Technology

Mazo Jr., Manuel
Delft University of Technology

14:40-15:00

Inter-Event Times Analysis for Planar Linear Event-Triggered Controlled Systems (I), pp. 1662-1667.

Postoyan, Romain
CNRS, CRAN, Université de Lorraine

Sanfelice, Ricardo G.
University of California, Santa Cruz

Heemels, W.P.M.H.
Eindhoven University of Technology

15:00-15:20

Distributed Event-Based Control and Stability of Interconnected Systems, pp. 1668-1673.

Theodosis, Dionyssios
KTH Royal Institute of Technology

Dimarogonas, Dinos V.
KTH Royal Institute of Technology

15:20-15:40

Mousavi, Seyed Hossein
Ryerson University

Noroozi, Navid
Otto Von Guericke Universitat Magdeburg

Geiselhart, Roman
University of Ulm

Koegel, Markus
Otto Von Guericke Universitat Magdeburg

1649.

Tadic, Vladislav
University of Bristol

Doucet, Arnaud
University of Oxford

14:40-14:40

A Continuous Threshold Model of Cascade Dynamics, pp. 1704-1709.

Zhong, Yaofeng Desmond
Princeton University

Leonard, Naomi Ehrich
Princeton University

15:00-15:20

Plausible Deniability As a Notion of Privacy, pp. 1710-1715.

Monshizadeh, Nima
University of Groningen

Tabuada, Paolo
University of California, Los Angeles

15:40-16:00

On Node Controllability and Observability in Complex Dynamical Networks, pp. 1716-1721.

Lo Iudice, Francesco
University of Napoli Federico II

Sorrentino, Francesco
University of New Mexico

Garofalo, Franco
University of Napoli

Pisano, Alessandro University of Cagliari
Kapetina, Mirna N. University of Novi Sad
Rapaić, Milan R. University of Novi Sad
Usai, Elio University of Cagliari

Mannegård, Mikael Åbo Akademi University
Toivonen, Hannu T. Åbo Akademi University

Khosravi, Mohammad ETH Zurich, Automatic Control Lab
Smith, Roy S. ETH Zurich

Efficient Identification of Linear Evolutions in Nonlinear Vector Fields: Koopman Invariant Subspaces, pp. 1746-1751.

Haseli, Masih University of California, San Diego
Cortes, Jorge University of California, San Diego

Persistent Excitation Condition for MIMO Volterra System Identification with Gaussian Distributed Input Signals, pp. 1752-1757.

Hu, Yangsheng University of California, San Diego
Tan, Li University of California, San Diego
de Callafon, Raymond A. University of California, San Diego

Co-Chair: Moller, Matthias A.
Organizer: Schoellig, Angela P

EEC 24 Learning II (Regular Session)

Chair: Tabuada, Paulo University of California, Los Angeles
Co-Chair: Pasqualetti, Fabio University of California, Riverside

Bajcay, Andrea University of California, Berkeley
Bansal, Somil University of California, Berkeley
Bronstein, Eli University of California, Berkeley
Tolani, Varun University of California, Berkeley

Organizer: Muller, Matthias A.

A Dynamical Biomolecular Neural Network, pp. 1797-1802.

Moorman, Andrew Massachusetts Institute of Technology
Cuba Samaniego, Christian University of California, Riverside
Maley, Carlo Arizona State University
Weiss, Ron MIT

Data-Driven Control for SISO Feedback Linearizable Systems with Unknown Control Gain, pp. 1803-1808.

Tabuada, Paulo University of California, Los Angeles
Fraile, Lucas University of California, Los Angeles

Forgetting Factor Kalman Filter with Dependent Noise
Processes, pp. 1809-1815.
Dokoupil, Jakub CEITEC, Brno University of Technology
Vaclavek, Pavel Brno University of Technology
15:00-15:20 WeB24.4
Incroci, Alessandro University of Pavia
De Nicolao, Giuseppe University of Pavia
15:20-15:40 WeB24.5
Distributed Robust Statistical Learning: Byzantine Mirror Descent, pp. 1822-1827.
Ding, Dongsheng University of Southern California
Wei, Xiaohan University of Southern California
Jovanovic, Mihailo R. University of Southern California
15:40-16:00 WeB24.6
A Fundamental Performance Limitation for Adversarial Classification, pp. 1828-1833.
Al Makdah, Abed AlRahman University of California Riverside
Katewa, Vaibhav University of California Riverside
Pasqualetti, Fabio University of California, Riverside

WeB25
Multi-Agent Systems II (Regular Session)
Chair: Tron, Roberto Boston University
Co-Chair: Poovendran, Radha University of Washington
14:00-14:20 WeB25.1
Distributed 3-D Bearing-Only Orientation Localization, pp. 1834-1841.
Leonardos, Spyridon University of Pennsylvania
Danilidis, Kostas University of Pennsylvania
Tron, Roberto Boston University
14:20-14:40 WeB25.2
Potential-Based Advice for Stochastic Policy Learning, pp. 1842-1849.
Xiao, Baichen University of Washington
Ramasubramanian, Bhaskar University of Washington
Clark, Andrew Worcester Polytechnic Institute
Hajishirzi, Hannaneh University of Washington
Bushnell, Linda University of Washington
Poovendran, Radha University of Washington
14:40-15:00 WeB25.3
Distributed Algorithm for Solving the Bottleneck Assignment Problem, pp. 1850-1855.
Khoo, Mitchell University of Melbourne
Wood, Tony A. University of Melbourne
Manzie, Chris University of Melbourne
Shames, Iman University of Melbourne
15:00-15:20 WeB25.4
PageRank Computation Via Web Aggregation in Distributed Randomized Algorithms, pp. 1856-1861.
Suzuki, Atsushi Tokyo Institute of Technology
Ishii, Hideaki Tokyo Institute of Technology
15:20-15:40 WeB25.5

Formation Control for Multiple Agents with Local Measurements: Continuous-Time and Sampled-Data-Based Cases, pp. 1862-1867.
Wang, Chen Peking University
Li, Shuai Peking University
Xia, Weiguo Dalian University of Technology
Sun, Jining Peking University
Xie, Guangming Peking University
15:40-16:00 WeB25.6
Mo, Yuanqiu University of Iowa
Dasgupta, Soura University of Iowa
Beal, Jacob Raytheon BBN Technologies

WeC01
Biological Rhythms and Oscillators (Invited Session)
Chair: Giordano, Giulia Delft University of Technology
Co-Chair: Singh, Abhyudai University of Delaware
Organizer: Giordano, Giulia Delft University of Technology
Organizer: Singh, Abhyudai University of Delaware
16:30-16:50 WeC01.1
Semidefinite Programming for Turing Instability Analysis in Molecular Communication Networks (I), pp. 1874-1880.
Hori, Yutaka Keio University
Miyazaka, Hiroki University of Tokyo
16:50-17:10 WeC01.2
Compensating for Sensor Error in the Model Predictive Control of Circadian Clock Phase, pp. 1881-1886.
Brown, Lindsey S. Harvard John A. Paulson School of Engineering and Applied Science
Klerman, Elizabeth B. Harvard Medical School, Brigham and Women's Hospital
Doyle III, Francis J. Harvard University
17:10-17:30 WeC01.3
Periodic Switching in a Recombinase-Based Molecular Circuit, pp. 1887-1892.
Cuba Samaniego, Christian University of California, Riverside
Giordano, Giulia Delft University of Technology
Franco, Elisa University of California, Los Angeles
17:30-17:50 WeC01.4
Nonlinear Dynamics of a Positive Hybrid Observer for the Impulsive Goodwin's Oscillator: A Design Study (I), pp. 1893-1898.
Yamalova, Diana Uppsala University
Medvedev, Alexander V. Uppsala University
Zhusubalyev, Zhanbai South West State University (Kursk State Technical University)
Proskurnikov, Anton V. Politecnico Di Torino
17:50-18:10 WeC01.5
Rapid Circadian Entrainment in Models of Circadian Genes Regulation, pp. 1899-1906.
Yin, Jiawei Rensselaer Polytechnic Institute
Julius, Agung Rensselaer Polytechnic Institute
Wen, John T. Rensselaer Polytechnic Institute
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-16:50</td>
<td>WeC03.1</td>
<td>Adaptive Impedance Control with Setpoint Force Tracking for Unknown Soft Environment Interactions, pp. 1951-1958.</td>
<td>Stephens, Trevor, Awasthi, Chaitanya, Kowalewski, Timothy</td>
<td>University of Minnesota, University of Minnesota, University of Minnesota</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>WeC03.2</td>
<td>Reinforcement Learning with Sparse Bellman Error Extrapolation for Infinite-Horizon Approximate Optimal Regulation, pp. 1959-1964.</td>
<td>Greene, Max L., Deptula, Patryk, Nivison, Scott, Dixon, Warren E.</td>
<td>University of Florida, University of Florida, Air Force Research Laboratory, University of Florida</td>
</tr>
<tr>
<td>16:10-16:30</td>
<td>WeC04</td>
<td>Discrete Event Systems (Regular Session)</td>
<td>Chair: Coogan, Samuel, Co-Chair: van Schuppen, Jan H.</td>
<td>Georgia Institute of Technology, Van Schuppen Control Research Lab.</td>
</tr>
<tr>
<td>16:30-16:50</td>
<td>WeC04.1</td>
<td>Context-Free Forbidden Path Control of Net Condition/Event Systems, pp. 1991-1996.</td>
<td>ZHANG, JIAFENG, Luo, Guangchao, Li, Zhiwu, Frey, Georg</td>
<td>Xidian University, Xidian University, Xidian University, Saarland University</td>
</tr>
</tbody>
</table>
Guerrini, Thomas California Institute of Technology
Mote, Mark California Institute of Technology
Singletary, Andrew Georgia Institute of Technology
Feron, Eric Georgia Institute of Technology
Ames, Aaron D. California Institute of Technology

Compositional Synthesis of Decentralized Robust Set-Invariance Controllers for Large-Scale Linear Systems, pp. 2054-2059.
Ghasemi, Kasra Boston University
Sadra, Sadra Massachusetts Institute of Technology
Belta, Calin Boston University

From Obstacle-Based Space Partitioning to Corridors and Path Planning, a Convex Lifting Approach, pp. 2060-2065.
Ioan, Daniel L2S-University Paris-Sud-CentraleSupelec-CNRS, Université Paris Saclay
Olaru, Sorin CentraleSupélec - INRIA Saclay
Prodan, Ionela Grenoble Institute of Technology (Grenoble INP) - Eisaar
Stoican, Florin UPB (Politehnica University of Bucharest)
Niculescu, Silviu-lulian CNRS-Supelec

Control of Networks II (Regular Session)
Chair: Baggio, Giacomo University of California, Riverside
Co-Chair: Astolfi, Daniele Université Claude Bernard Lyon 1

Optimizing Average Controllability of Networked Systems, pp. 2066-2071.
Srihagakollapu, Manikya Valli Indian Institute of Technology, Madras
Kalaimani, Rachel Kalpana Indian Institute of Technology, Madras
Pasumarthi, Ramkrishna Indian Institute of Technology, Madras

Data-Driven Minimum-Energy Controls for Linear Systems, pp. 2072-2077.
Baggio, Giacomo University of California, Riverside
Katewa, Vaibhav University of California, Riverside
Pasqualetti, Fabio University of California, Riverside

Synchronization in Networks of Identical Nonlinear Systems Via Dynamic Dead Zones, pp. 2078-2083.
Casadei, Giacomo Ecole Centrale Lyon
Astolfi, Daniele Université Claude Bernard Lyon 1
Alessandri, Angelo University of Genova
Zaccarian, Luca LAAS-CNRS and University of Trento

Cooperative Aerial Load Transportation Via Sampled Communication, pp. 2084-2089.
Decentralized Gain Adaptation for Optimal Pinning Controllability of Complex Networks, pp. 2090-2095.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papadopoulos, Evangelos</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Chen, Zheng</td>
<td>University of Notre Dame</td>
</tr>
</tbody>
</table>

Time Scale Design for Network Resilience, pp. 2096-2101.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin, Hai</td>
<td>University of Notre Dame</td>
</tr>
<tr>
<td>Shorten, Robert</td>
<td>University College Dublin</td>
</tr>
</tbody>
</table>

On the Design of Cyber-Physical Control System for a Smart Pedelec (Ebike), pp. 2108-2113.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannion, Andrew</td>
<td>University College Dublin</td>
</tr>
<tr>
<td>Manzoni, Annalisa</td>
<td>University of Padova</td>
</tr>
</tbody>
</table>

The Bouncing Penny and Nonholonomic Impacts, pp. 2114-2119.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, William</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Bloch, Anthony M.</td>
<td>University of Michigan</td>
</tr>
</tbody>
</table>

Optimal Trajectory Planning and Control of Buoyancy Control Device Enabled by Water Electrolyzer, pp. 2120-2125.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>zuo, wenyu</td>
<td>University of Houston</td>
</tr>
<tr>
<td>Yi, Xiongfei</td>
<td>University of Houston</td>
</tr>
</tbody>
</table>

On Impact De-Orbiting for Satellites Using a Prescribed Impedance Behavior, pp. 2126-2131.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanos, Kostas</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Xydi-Chrysafi, Foteini</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Papadopoulos, Evangelos</td>
<td>National Technical University of Athens</td>
</tr>
</tbody>
</table>
WeC09
Game Theory I (Regular Session)

Chair: Dong, Roy
University of Illinois, Urbana-Champaign
Co-Chair: Brown, Philip N.
University of Colorado, Colorado Springs

Brown, Philip N.
University of Colorado, Colorado Springs

16:30-16:50
WeC09.1

Constrained Mean-Field-Type Games: Stationary Case, pp. 2181-2187.
Li, Sisi
University of Michigan
Li, Nan
University of Michigan
Girard, Anouck
University of Michigan
Kolmanovsky, Ilya V.
University of Michigan

16:50-17:10
WeC09.2

Huang, Qisheng
Singapore University of Technology and Design
Xu, Yunjian
Chinese University of Hong Kong
Courcoubetis, Costas
Singapore University of Technology and Design

17:10-17:30
WeC09.3

Strategic Inference with a Single Private Sample, pp. 2188-2193.
Miehling, Erik
University of Illinois, Urbana-Champaign
Dong, Roy
University of Illinois, Urbana-Champaign
Langbort, Cedric
University of Illinois, Urbana-Champaign
Basar, Tamer
University of Illinois, Urbana-Champaign

17:30-17:50
WeC09.4

Sensor-Reveal Games, pp. 2194-2200.
Hespanha, Joao P.
University of California, Santa Barbara
Garagic, Denis
BAE Systems FAST Labs

17:50-18:10
WeC09.5

Constrained Mean-Field-Type Games: Stationary Case, pp. 2208-2213.
Barreiro-Gomez, Julian
New York University, Abu Dhabi (NYUAD)
Tembine, Hamidou
NYU

18:10-18:30
WeC09.6

WeC10
New Mobility Systems (Invited Session)

Chair: Cassandras, Christos G.
Boston University
Co-Chair: Su, Rong
Nanyang Technological University
Organizer: Cassandras, Christos G.

WeC11
Markov Processes II (Regular Session)

Chair: He, Xingkang
KTH Royal Institute of Technology
Co-Chair: Carè, Algo
University of Brescia

16:30-16:50
WeC11.1

Savas, Yagiz
University of Texas, Austin
Gupta, Vijay
Ornik, Melkior
Ratliff, Lillian J.
Topcu, Ufuk

Caré, Algo
Csájí, Balázs
Gerencsér, Balázs
Gerencsér, László
Rasonyi, Miklós

17:10-17:30
WeC11.3
Reward-Based Deception with Cognitive Bias, pp. 2265-2270.
Wu, Bo
Cubuktepe, Murat
Bharadwaj, Sudarshan
Topcu, Ufuk

17:30-17:50
WeC11.4
Unpredictable Planning under Partial Observability, pp. 2271-2277.
Hibbard, Michael
Savas, Yagiz
Wu, Bo
Tanaka, Takashi
Topcu, Ufuk

17:50-18:10
WeC11.5
Network Weight Estimation for Binary-Valued Observation Models, pp. 2278-2283.
Xing, Yu
He, Xingkang
Fang, Haitao
Johansson, Karl H.

18:10-18:30
WeC11.6
Weininger, Maximilian
Meggendorfer, Tobias
Kretinsky, Jan

WeC12
Analytic and Geometric Tools in Quantum Control (Invited Session)
Chair: Chambrion, Thomas
Co-Chair: Ticozzi, Francesco
Organizer: Chambrion, Thomas

16:30-16:50
WeC12.1
On the Compatibility between the Adiabatic and the Rotating Wave Approximations in Quantum Control (I), pp. 2292-2297.
Augier, Nicolas

WeC13
Predictive Control for Nonlinear Systems (Regular Session)
Chair: Lobo Pereira, Fernando
Co-Chair: Houska, Boris

16:30-16:50
WeC13.1
Performance Bounds for Stochastic Receding Horizon Control with Randomly Sampled Measurements, pp. 2330-2335.
Tanwani, Aneel
Chatterjee, Debasish
Gruene, Lars

16:50-17:10
WeC13.2
Learning Model Predictive Control for Connected Autonomous Vehicles, pp. 2336-2343.
Jafarzadeh, Hassan
Fleming, Cody

17:10-17:30
WeC13.3
A Framework for the Sustainable Control and Optimization of Resources in Agriculture, pp. 2344-2349.
Lobo Pereira, Fernando
A Time Splitting Based Real-Time Iteration Scheme for Nonlinear MPC, pp. 2350-2355.
Jiang, Yuning ShanghaiTech University
Jones, Colin N. EPFL
Houska, Boris ShanghaiTech University

Ojaghi, Pegah University of California, Santa Cruz
Altin, Berk University of California, Santa Cruz
Sanfelice, Ricardo G. University of California, Santa Cruz

Malyuta, Danylo University of Washington
Acikmese, Behcet University of Washington

Lyapunov Methods III (Regular Session)
Chair: Wsniewski, Rafal Aalborg University
Co-Chair: Hendrickx, Julien M. Université Catholique de Louvain

Safe Reachability Verification of Nonlinear Switched Systems Via a Barrier Density, pp. 2368-2372.
Kivlicim, Aysegul Aalborg University
Karabacak, Ozkan Aalborg University
Wisniewski, Rafal Aalborg University

Universal Formula for Smooth Safe Stabilization, pp. 2373-2378.
Ong, Pio University of California, San Diego
Cortes, Jorge University of California, San Diego

Kinetic-Potential Energy Shaping for Mechanical Systems with Applications to Tracking, pp. 2379-2384.
Ferguson, Joel University of Newcastle
Donaire, Alejandro University of Newcastle
Middleton, Richard University of Newcastle

Trajectory Convergence from Coordinate-Wise Decrease of Quadratic Energy Functions, and Applications to Platoons, pp. 2385-2390.
Hendrickx, Julien M. Université Catholique de Louvain
Gerencsér, Balázs Alfred Rényi Institute of Mathematics
Fidan, Baris University of Waterloo

Gruene, Lars University of Bayreuth
Höger, Matthias Siemens AG

Relaxing the Hamilton Jacobi Bellman Equation to Construct Inner and Outer Bounds on Reachable Sets, pp. 2397-2404.
Jones, Morgan Arizona State University
Peet, Matthew M. Arizona State University

Optimality Conditions for Control Problems II (Invited Session)
Chair: Poggiolini, Laura University of Firenze
Co-Chair: Chittaro, Francesca Université de Toulon
Organizer: Chittaro, Francesca Université de Toulon
Organizer: Frankowska, Helene CNRS and Sorbonne University, Campus Pierre Et Marie Curie
Organizer: Poggiolini, Laura University of Firenze

On Optimal Control Problems with Nonregular Mixed Constraints (I), pp. 2410-2415.
Becerril, Jorge Universidade do Porto
de Pinho, Maria Do Rosario Universidade do Porto, Fac. Engenharia

On Second Order Necessary Conditions in Infinite Dimensional Optimal Control with State Constraints (I), pp. 2416-2421.
Frankowska, Helene CNRS and Sorbonne University, Campus Pierre Et Marie Curie
Marchini, Elsa Maria Politecnico di Milano
Mazzola, Marco Sorbonne Université

The Turnpike Property in Nonlinear Optimal Control a Geometric Approach, pp. 2422-2427.
Sakamoto, Noboru Nanzan University
Pighin, Dario Universidad Autonoma de Madrid
Zuazua, Enrique DeustoTech, Universidad de Deusto

Özgarpucu, Mehmet Can German Aerospace Center, DLR

Modelling Uncertainty in Reinforcement Learning (I), pp. 2436-2441.
Palladino, Michele GSSI - Gran Sasso Science Institute
Murray, Ryan Pennsylvania State University
WeC16
Optimization III (Regular Session)

| Chair: Taliapragada, Pavankumar | Indian Institute of Science |
| Co-Chair: Ishizaki, Takayuki | Tokyo Institute of Technology |

16:30-16:50 WeC16.1

Predicting Mode Confusion through Mixed Integer Linear Programming, pp. 2442-2448.

- Sivaramakrishnan, Vignesh University of New Mexico
- Thapliyal, Omanshu Purdue University
- P. Vinod, Abraham University of Texas, Austin
- Oishi, Meeko University of New Mexico
- Hwang, Inseok Purdue University

16:50-17:10 WeC16.2

A Distributed Online Convex Optimization Algorithm with Improved Dynamic Regret, pp. 2449-2454.

- Zhang, Yan Duke University
- Ravier, Robert Duke University
- Zavlanos, Michael M. Duke University
- Tarokh, Vahid Duke University

17:10-17:30 WeC16.3

- Ravier, Robert Duke University
- Calderbank, A. R. Duke University
- Tarokh, Vahid Duke University

17:30-17:50 WeC16.4

- Koike, Masakazu Tokyo University of Marine Science and Technology
- Ishizaki, Takayuki Tokyo Institute of Technology
- Ramdani, Nacim University of Orléans
- Imura, Jun-ichi Tokyo Institute of Technology

17:50-18:10 WeC16.5

Optimal Coverage Control and Stochastic Multi-Target Tracking, pp. 2467-2472.

- Khaledyan, Milad University of New Mexico
- Puthuvana Vinod, Abraham University of Texas, Austin
- Oishi, Meeko University of New Mexico
- Richards, John A. Sandia National Laboratories

18:10-18:30 WeC16.6

Robust Optimization Via Discrete-Time Saddle Point Algorithm, pp. 2473-2478.

- Ebrahimi, Keivan Iowa State University
- Elia, Nicola University of Minnesota
- Vaidya, Umesh Iowa State University

WeC17
Switched Systems III (Regular Session)

| Chair: Kader, Zohra | L2S, CentraleSupelec, Paris |
| Co-Chair: Raïssi, Tarek | Conservatoire National Des Arts Et Métiers |

16:30-16:50 WeC17.1

- Zammani, Chaima Conservatoire National Des Arts Et Métiers (CNAM), Cedric Lab
- Van Gorp, Jeremy CNAM
- Pang, Xubin Xidian University
- Raïssi, Tarek Conservatoire National Des Arts Et Métiers

16:50-17:10 WeC17.2

- Kader, Zohra L2S, CentraleSupelec, Paris
- Girard, Antoine CNRS

17:10-17:30 WeC17.3

Free-Matrices Min-Projection Control for High Frequency DC-DC Converters, pp. 2491-2496.

- Seriye, Mathias LAAS-CNRS
- Albea Sanchez, Carolina LAAS CNRS; University de Toulouse 3
- Seuret, Alexandre CNRS

17:30-17:50 WeC17.4

Switching Signal Estimation Based on Interval Observer for a Class of Switched Linear Systems, pp. 2497-2502.

- Zammani, Chaima Conservatoire National Des Arts Et Métiers (CNAM), Cedric Lab
- VAN GORP, Xubin CNAM
- Ping, Xubin Xidian University
- Raïssi, Tarek Conservatoire National Des Arts Et Métiers

17:50-18:10 WeC17.5

- Davoudi, Ramtin Tarbiat Modares University
- Hosseini, S. Mohammad Tarbiat Modares University
- Ramezani, Amin Tarbiat Modares University

18:10-18:30 WeC17.6

- Wu, Bo University of Texas, Austin
- Cubuktepe, Murat University of Texas, Austin
- Topcu, Ufuk University of Texas, Austin

WeC18
Observers for Nonlinear Systems III (Regular Session)

| Chair: Verriest, Erik I. | Georgia Institute of Technology |
| Co-Chair: Millerioux, Gilles | Lorraine University |

16:30-16:50 WeC18.1

- Wang, Miaomiao Western University
- Tayebi, Abdelhamid Lakehead University

16:50-17:10 WeC18.2

Detecting Limit Cycles in Dimension Two, pp. 2522-2527.

- Verriest, Erik I. Georgia Institute of Technology
- Murali, Vishal Georgia Institute of Technology

17:10-17:30 WeC18.3

Contact Force Observer for Space Robots, pp. 2528-2535.
<table>
<thead>
<tr>
<th>Session Time</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30-17:50</td>
<td>Attitude Observation for Second Order Attitude Kinematics, pp. 2536-2542.</td>
</tr>
<tr>
<td></td>
<td>Cavenago, Francesco, Giordano, Alessandro, Massimo, Massari, Mauro.</td>
</tr>
<tr>
<td></td>
<td>van Goor, Pieter, Mahony, Robert, Hamel, Tarek, Trumpf, Jochen.</td>
</tr>
<tr>
<td>18:10-18:30</td>
<td>Flatness and Submersivity of Discrete-Time Dynamical Systems, pp. 2550-2555.</td>
</tr>
<tr>
<td></td>
<td>GUILLOT, PHILIPPE, Millerioux, Gilles.</td>
</tr>
<tr>
<td>16:30-16:50</td>
<td>On Optimal Steering of a Non-Markovian Gaussian Process, pp. 2556-2561.</td>
</tr>
<tr>
<td></td>
<td>Alpago, Daniele, Chen, Yongxin, Georgiou, Tryphon T., Pavon, Michele.</td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>Surrogate Problems for Tractable Excitation Management in Stochastic MPC, pp.2562-2567.</td>
</tr>
<tr>
<td></td>
<td>Brüggemann, Sven, Bitmead, Robert R.</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>Estimating the Probability of Safe Landing for Aircrafts, pp. 2568-2573.</td>
</tr>
<tr>
<td></td>
<td>Semakov, Sergei, Semakov, Ivan.</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>Compositional Verification of Large-Scale Stochastic Systems Via Relaxed Small-Gain Conditions, pp. 2574-2579.</td>
</tr>
<tr>
<td></td>
<td>Lavaei, Abolfazl, Zamani, Majid.</td>
</tr>
<tr>
<td>18:10-18:30</td>
<td>Event-Triggered and Self-Triggered Control for Distributed Systems (Invited Session)</td>
</tr>
<tr>
<td></td>
<td>Chair: Heemels, W.P.M.H., Co-Chair: Johansson, Karl H.</td>
</tr>
<tr>
<td></td>
<td>Organizer: Heemels, W.P.M.H., Organizer: Johansson, Karl H.</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times (I), pp. 2604-2609.</td>
</tr>
<tr>
<td></td>
<td>Dolk, Victor Sebastiaan, Postoyan, Romain, Heemels, W.P.M.H.</td>
</tr>
<tr>
<td></td>
<td>Hashimoto, Kazumune, Saoud, Adnane, Kishida, Masako, Ushio, Toshimitsu.</td>
</tr>
</tbody>
</table>

Note: The above table represents a summary of sessions from a technical conference.
<table>
<thead>
<tr>
<th>WeC22</th>
<th>Risso 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification III (Regular Session)</td>
<td></td>
</tr>
<tr>
<td>Chair: Aljanaideh, Khaled</td>
<td>Jordan University of Science and Technology</td>
</tr>
<tr>
<td>Co-Chair: Sojoudi, Somayeh</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>WeC22.1</td>
<td>16:30-16:50</td>
</tr>
<tr>
<td>Bako, Laurent</td>
<td>Ecole Centrale de Lyon</td>
</tr>
<tr>
<td>Yahya, Olfa</td>
<td>Université de Gâbles</td>
</tr>
<tr>
<td>WeC22.2</td>
<td>16:50-17:10</td>
</tr>
<tr>
<td>From Dirac Structure to State Model: Identification of Linear Time-Varying Port-Hamiltonian Systems, pp. 2666-2671.</td>
<td></td>
</tr>
<tr>
<td>Rapisarda, Paolo</td>
<td>University of Southampton</td>
</tr>
<tr>
<td>Branford, Edward</td>
<td>College of Engineering, Mathematics and Physical Sciences, Unive</td>
</tr>
<tr>
<td>WeC22.3</td>
<td>17:10-17:30</td>
</tr>
<tr>
<td>Markovsky, Ivan</td>
<td>Vrije Universiteit Brussel</td>
</tr>
<tr>
<td>Liu, Tianxiang</td>
<td>RIKEN Center for Advanced Intelligence Project</td>
</tr>
<tr>
<td>Takeda, Akiko</td>
<td>University of Tokyo</td>
</tr>
<tr>
<td>WeC22.4</td>
<td>17:30-17:50</td>
</tr>
<tr>
<td>Sample Complexity Lower Bounds for Linear System Identification, pp. 2676-2681.</td>
<td></td>
</tr>
<tr>
<td>Jedra, Yassir</td>
<td>KTH Royal Institute of technology</td>
</tr>
<tr>
<td>Proutiere, Alexandre</td>
<td>KTH Royal Institute of technology</td>
</tr>
<tr>
<td>WeC22.5</td>
<td>17:50-18:10</td>
</tr>
<tr>
<td>Learning Sparse Dynamical Systems from a Single Sample Trajectory, pp. 2682-2689.</td>
<td></td>
</tr>
<tr>
<td>Fattahi, Salar</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Matni, Nikolai</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Sojoudi, Somayeh</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>WeC22.6</td>
<td>18:10-18:30</td>
</tr>
<tr>
<td>Errors-In-Variables Identification of Composite Noncausal-FIR/IIR Models with Application to Transmissibility Identification, pp. 2690-2695.</td>
<td></td>
</tr>
<tr>
<td>Aljanaideh, Khaled</td>
<td>Jordan University of Science and Technology</td>
</tr>
<tr>
<td>Diversi, Roberto</td>
<td>University of Bologna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WeC23</th>
<th>Risso 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning-Based Model Predictive Control (Invited Session)</td>
<td></td>
</tr>
<tr>
<td>Chair: Trimpe, Sebastian</td>
<td>Max Planck Institute for Intelligent Systems</td>
</tr>
<tr>
<td>Co-Chair: Zeilinger, Melanie N.</td>
<td>ETH Zurich</td>
</tr>
<tr>
<td>Organizer: Schoellig, Angela P</td>
<td>University of Toronto</td>
</tr>
<tr>
<td>Organizer: Trimpe, Sebastian</td>
<td>Max Planck Institute for Intelligent Systems</td>
</tr>
<tr>
<td>WeC23.1</td>
<td>16:30-16:50</td>
</tr>
<tr>
<td>Regularized and Distributionally Robust Data-Enabled Predictive Control (I), pp. 2696-2701.</td>
<td></td>
</tr>
</tbody>
</table>
16:50-17:10 WeC23.2
Sample-Based Learning Model Predictive Control for Linear Uncertain Systems (I), pp. 2702-2707.
Rosolia, Ugo University of California, Berkeley
Borrelli, Francesco University of California, Berkeley

17:10-17:30 WeC23.3
Grashoff, Jan Universitäts Lübeck
Maennel, Georg Universitäts Lübeck
Abbas, Hossam University of Lübeck
Rostalski, Philipp University of Luebeck

17:30-17:50 WeC23.4
Performance-Oriented Model Learning for Data-Driven MPC Design, pp. 2714-2719.
Piga, Dario University of Applied Sciences and Arts of Southern Switzerland
Prowler.io
Fogione, Marco SUPSI
Formentin, Simone Politecnico di Milano
Bemporad, Alberto IMT Institute for Advanced Studies

17:50-18:10 WeC23.5
Model Predictive Control Design for Dynamical Systems Learned by Echo State Networks, pp. 2720-2725.
Bugliari Armenio, Luca Politecnico di Milano
Terzi, Enrico Politecnico di Milano
Farina, Marcello Politecnico di Milano
Scattolini, Riccardo Politecnico di Milano

18:10-18:30 WeC23.6
Probabilistic Verification and Reachability Analysis of Neural Networks Via Semidefinite Programming (I), pp. 2726-2731.
Fazlyab, Mahyar University of Pennsylvania
Morari, Manfred University of Pennsylvania
Pappas, George J. University of Pennsylvania

WeC24 Hermès
Learning III (Regular Session)
Chair: Preciado, Victor M. University of Pennsylvania
Co-Chair: Mehta, Prashant G. University of Illinois, Urbana Champaign

16:30-16:50 WeC24.1
Data-Driven Stabilization of Nonlinear Systems Via Tree-Based Ensemble Learning, pp. 2732-2737.
Aydogluglu, Alp University of Pennsylvania
Becker, Cassiano University of Pennsylvania
Preciado, Victor M. University of Pennsylvania

16:50-17:10 WeC24.2
Decision Variance in Risk-Averse Online Learning, pp. 2738-2744.
Vakil, Sattar Prowler.io
Boukouvalas, Alexis Prowler.io
Zhao, Qiong Cornell University

17:10-17:30 WeC24.3
Distributed Online Learning Over Time-Varying Graphs Via Proximal Gradient Descent, pp. 2745-2751.
Dixit, Rishabh Rutgers University
Bedi, Amrit S. Indian Institute of Technology Kanpur
Rajawat, Ketan Indian Institute of Technology Kanpur
Koppel, Alec U.S. Army Research Laboratory

17:30-17:50 WeC24.4
Nonlinear Reduced Order Source Identification under Uncertainty, pp. 2752-2757.
Khodayi-mehr, Reza Duke University
Zavlanos, Michael M. Duke University

17:50-18:10 WeC24.5
Q-Learning for POMDP: An Application to Learning Locomotion Gaits, pp. 2758-2763.
Wang, Tixian University of Illinois, Urbana Champaign
Taghvaei, Amirhossein University of Illinois, Urbana Champaign
Mehta, Prashant G. University of Illinois, Urbana Champaign

18:10-18:30 WeC24.6
Kamanchi, Chandramouli Indian Institute of Science, Bangalore
Diddigi, Raghuram Bharadwaj Indian Institute of Science, Bangalore
K.J., Prabuchandran Indian Institute of Science, Bangalore
Bhatnagar, Shalabh Indian Institute of Science, Bangalore

WeC25 Athéna
Multi-Agent Systems III (Regular Session)
Chair: Karimoddini, Ali North Carolina A&T State University
Co-Chair: Sakurama, Kazunori Kyoto University

16:30-16:50 WeC25.1
On-The-Fly Decentralized Tasking of Autonomous Vehicles, pp. 2770-2775.
Tadewos, Tadewos Getahun North Carolina A&T State University
Shamgha, Laya North Carolina A&T State University
Karimoddini, Ali North Carolina A&T State University

16:50-17:10 WeC25.2
Tadewos, Tadewos Getahun North Carolina A&T State University
Shamgha, Laya North Carolina A&T State University
Karimoddini, Ali North Carolina A&T State University
17:10-17:30 WeC25.3
Formation-Oriented Motion Coordination of Multi-Agent Systems Over Relative Measurements, pp. 2782-2787.
Sakurama, Kazunori Kyoto University

17:30-17:50 WeC25.4
Phan, Tung, M California Institute of Technology
Cai, Karena Ms
Murray, Richard M. California Institute of Technology

17:50-18:10 WeC25.5
Asynchronous Decision-Making Dynamics under Imitation Update Rule in Heterogeneous Populations, pp. 2796-2801.
Fu, Yiheng University of Alberta
Ramazi, Pouria University of Alberta

18:10-18:30 WeC25.6
Hespanhol, Pedro University of California, Berkeley
Aswani, Anil University of California, Berkeley
ThSP1

Distributed Machine Learning Over Networks (Semiplenary Session)

Chair: Sepulchre, Rodolphe
University of Cambridge

08:30-09:30
ThSP1.1
Distributed Machine Learning Over Networks*

- Bach, Francis
INRIA - Ecole Normale Supérieure

ThSP2

The Curse of Linearity and Time-Invariance (Semiplenary Session)

Chair: Prieur, Christophe
CNRS

08:30-09:30
ThSP2.1
The Curse of Linearity and Time-Invariance*

- Astolfi, Alessandro
Imperial College & University of Rome

ThA01

Control Methods for Biology and Bioprocesses (Invited Session)

Chair: Giraldi, Laetitia
INRIA Sophia-Antipolis
Méditerranée

Co-Chair: Chaves, Madalena
INRIA

Organizer: Chaves, Madalena
INRIA

Organizer: Giraldi, Laetitia
INRIA Sophia-Antipolis
Méditerranée

10:00-10:20
ThA01.1
An Antithetic Integral Rein Controller for Bio-Molecular Networks (I), pp. 2808-2813.

- Gupta, Ankit
ETH Zürich

- Khammash, Mustafa H.
ETH Zurich

10:20-10:40
ThA01.2
A Hybrid Control against Species Invasion in the Chemostat (I), pp. 2814-2819.

- Tani, Fatima Zahra
Université de Montpellier

- Rapaport, Alain
U. Montpellier, INRA, Montpellier SupAgro

- Bayen, Térence
Université de Montpellier

10:40-11:00
ThA01.3
Some Remarks on Robust Gene Regulation in a Biomolecular Integral Controller (I), pp. 2820-2825.

- Agrawal, Deepak Kumar
Northeastern University

- Marshal, Ryan
University of Minnesota

- Ali-Al-Radhawi, Muhammad
Massachusetts Institute of Technology

- Noireaux, Vincent
University of Minnesota

- Sontag, Eduardo
Northeastern University

11:00-11:20
ThA01.4
Coupling and Synchronization of Piecewise Linear Genetic Regulatory Systems (I), pp. 2826-2831.

- Chaves, Madalena
INRIA

- Scardovi, Luca
University of Toronto

- Firrpi, Eleni
INRIA

11:20-11:40
ThA01.5
Proportional and Derivative Controllers for Buffering Noisy Gene Expression, pp. 2832-2837.

ThA02

Linear Matrix Inequalities (Regular Session)

Chair: Ravazzi, Chiara
National Research Council of Italy (CNR)

Co-Chair: Kojima, Akira
Tokyo Metropolitan University

10:00-10:20
ThA02.1

- Krokavec, Dusan
Technical University of Kosice, Slovakia

- Filasova, Anna
Technical University of Kosice, Slovakia

10:20-10:40
ThA02.2
A Calculation Method of Parameter-Dependent LMIs on Bernstein Polynomial Basis: Polytopic Representation Case, pp. 2850-2857.

- Kojima, Akira
Tokyo Metropolitan University

10:40-11:00
ThA02.3

- Park, Chaneun
Postech

- Park, In Seok
Postech

- Park, PooGyeon
Pohang University of Sci. & Technology

11:00-11:20
ThA02.4
Robust Data-Driven Neuro-Adaptive Observers with Lipschitz Activation Functions, pp. 2862-2867.

- Chakrabarty, Ankush
Mitsubishi Electric Research Laboratories (MERL)

- Zemouche, Ali
CRAN UMR CNRS 7039 & INRIA: EPI - DISCO

- Rajamani, Rajesh
University of Minnesota

- Benosman, Mouhacine
Mitsubishi Electric Research Laboratories

11:20-11:40
ThA02.5

- Ferrante, Francesco
GIPSA-Lab and Université Grenoble Alpes

- Dabbene, Fabrizio
CNR-IEIIT

- Ravazzi, Chiara
National Research Council of Italy (CNR)

11:40-12:00
ThA02.6

- Ichalal, Dalil
Université d'Evry Val d'Essonne, IBISC Lab

- Mammar, Said
Université d'Evry IBISC

Technical Program for Thursday December 12, 2019

<table>
<thead>
<tr>
<th>ThSP1</th>
<th>Distributed Machine Learning Over Networks (Semiplenary Session)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Sepulchre, Rodolphe</td>
<td>University of Cambridge</td>
</tr>
<tr>
<td>08:30-09:30</td>
<td>ThSP1.1</td>
</tr>
<tr>
<td>Distributed Machine Learning Over Networks*</td>
<td></td>
</tr>
<tr>
<td>Bach, Francis</td>
<td>INRIA - Ecole Normale Supérieure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ThSP2</th>
<th>The Curse of Linearity and Time-Invariance (Semiplenary Session)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Prieur, Christophe</td>
<td>CNRS</td>
</tr>
<tr>
<td>08:30-09:30</td>
<td>ThSP2.1</td>
</tr>
<tr>
<td>The Curse of Linearity and Time-Invariance*</td>
<td></td>
</tr>
<tr>
<td>Astolfi, Alessandro</td>
<td>Imperial College & University of Rome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ThA01</th>
<th>Control Methods for Biology and Bioprocesses (Invited Session)</th>
</tr>
</thead>
</table>
| Chair: Giraldi, Laetitia | INRIA Sophia-Antipolis
Méditerranée |
| Co-Chair: Chaves, Madalena | INRIA |
| Organizer: Chaves, Madalena | INRIA |
| Organizer: Giraldi, Laetitia | INRIA Sophia-Antipolis
Méditerranée |
| 10:00-10:20 | ThA01.1 |
| An Antithetic Integral Rein Controller for Bio-Molecular Networks (I), pp. 2808-2813. | |
| Gupta, Ankit | ETH Zürich |
| Khammash, Mustafa H. | ETH Zurich |
| 10:20-10:40 | ThA01.2 |
| A Hybrid Control against Species Invasion in the Chemostat (I), pp. 2814-2819. | |
| Tani, Fatima Zahra | Université de Montpellier |
| Rapaport, Alain | U. Montpellier, INRA, Montpellier SupAgro |
| Bayen, Térence | Université de Montpellier |
| 10:40-11:00 | ThA01.3 |
| Some Remarks on Robust Gene Regulation in a Biomolecular Integral Controller (I), pp. 2820-2825. | |
| Agrawal, Deepak Kumar | Northeastern University |
| Marshal, Ryan | University of Minnesota |
| Ali-Al-Radhawi, Muhammad | Massachsetts Institute of Technology |
| Noireaux, Vincent | University of Minnesota |
| Sontag, Eduardo | Northeastern University |
| 11:00-11:20 | ThA01.4 |
| Coupling and Synchronization of Piecewise Linear Genetic Regulatory Systems (I), pp. 2826-2831. | |
| Chaves, Madalena | INRIA |
| Scardovi, Luca | University of Toronto |
| Firrpi, Eleni | INRIA |
| 11:20-11:40 | ThA01.5 |
| Proportional and Derivative Controllers for Buffering Noisy Gene Expression, pp. 2832-2837. | |

ThA03

Adaptive Control IV (Regular Session)

Chair: Bai, He
Co-Chair: Padhi, Radhakant

10:00-10:20 ThA03.1
Cooperative Manipulation of an Unknown Payload with Concurrent Mass and Drag Force Estimation, pp. 2880-2885.
Thapa, Sandesh
Self, Ryan
Kamalapurkar, Rushikesh
Bai, He

10:20-10:40 ThA03.2
Output-Constrained Robust Adaptive Control for Uncertain Nonlinear MIMO Systems with Unknown Control Directions, pp. 2886-2891.
Sachan, Kapil
Padhi, Radhakant

10:40-11:00 ThA03.3
Andersen, Tom Sian
Kristiansen, Raymond

11:00-11:20 ThA03.4
Gradient Based Pre-Filter Design for Data-Driven Parameter Updating for Regulatory Controller Based on Variance Evaluation, pp. 2898-2903.
Okada, Shogo
Yokoyama, Tsukasa
Masuda, Shiro

11:20-11:40 ThA03.5
Solo, Victor
Pasha, Syed Ahmed

11:40-12:00 ThA03.6
Initial Excitation Based Adaptive Observer with Multiple Switching, pp. 2910-2915.
Katiyar, Atul
Basu Roy, Sayan
Bhasin, Shubhendu

ThA04

Fault Detection and Diagnosis (Regular Session)

Chair: Torres, Lizeth
Co-Chair: Besancon, Gildas

10:00-10:20 ThA04.1
Zhang, Jian

10:20-10:40 ThA04.2
Namvar, Mehrzad
Karami, Sasan

10:40-11:00 ThA04.3
Minimizing Side-Channel Attack Vulnerability Via Schedule Randomization, pp. 2928-2933.
Vreman, Nils
Pates, Richard
Krueger, Kristin
Fohler, Gerhard
Maggio, Martina

11:00-11:20 ThA04.4
Fault Isolation Based on Online Sparse Optimization of Streaming Faulty Data, pp. 2934-2939.
Li, Wenqing
Wang, Yue
Jabari, Saif Eddin

11:20-11:40 ThA04.5
Invariant-Set Based Minimal Detectable Fault Computation of Discrete-Time LPV Systems with Bounded Uncertainties, pp. 2940-2945.
Tan, Junbo
Olaru, Sorin
Roman, Monica
Xu, Feng

11:40-12:00 ThA04.6
Torres Ortiz, Flor Lizeth
Besancon, Gildas

ThA05

Building Automation (Regular Session)

Chair: Rostampour, Vahab
Co-Chair: Jain, Tushar

10:00-10:20 ThA05.1
G. Ordonez, Joaquin

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20-10:40</td>
<td>ThA05.2</td>
<td>Identification of Aggregate Building Thermal Dynamic Model and Unmeasured Internal Heat Load from Data</td>
<td>Guo, Zhong; Coffman, Austin; Munk, Jeffrey; Im, Pijia; Barooah, Prabir</td>
<td>University of Florida</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>ThA05.3</td>
<td>Diagnosis of Actuator Faults in VAV-HVAC System Using a Bilinear Observer</td>
<td>A, Mona Subramaniam; Jain, Tushar; Yame, Joseph Julien</td>
<td>Indian Institute of Technology Mandi; Indian Institute of Technology Mandi; Université de Lorraine</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>ThA05.4</td>
<td>Modeling and Boundary Control Design for a High-Rise Building Structure</td>
<td>Song, Yuhua; Han, Zhiji; He, Xiuyu; He, Wei</td>
<td>University of Science and Technology Beijing; University of Science and Technology Beijing; University of Science and Technology Beijing; University of Science and Technology Beijing</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>ThA05.5</td>
<td>Buildings-To-Grid Integration with High Wind Power Penetration</td>
<td>Rostampour, Vahab; Badings, Thom S.; Scherpen, Jacquelen M.A.</td>
<td>University of Groningen</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>ThA06.1</td>
<td>CODES: Cooperative Data-Enabled Extremum Seeking for Multi-Agent Systems</td>
<td>Poveda, Jorge I.; Vamvoudakis, Kyriakos G.</td>
<td>University of Colorado, Boulder; Georgia Institute of Technology</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>ThA06.2</td>
<td>A System Theoretical Perspective to Gradient-Tracking Algorithms for Distributed Quadratic Optimization</td>
<td>Bin, Michelangelo; Notarnicola, Ivano; Marconi, Lorenzo; Notarstefano, Giuseppe</td>
<td>University of Bologna; University of Bologna; University of Bologna; University of Bologna</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>ThA06.3</td>
<td>Inducing Uniform Asymptotic Stability in Non-Autonomous Accelerated Optimization Dynamics Via Hybrid Regularization</td>
<td>Poveda, Jorge I.; Li, Na</td>
<td>University of Colorado, Boulder; Harvard University</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>ThA06.4</td>
<td>Distributed Submodular Maximization with Bounded Communication Cost</td>
<td>Castiglia, Timothy; Patterson, Stacy</td>
<td>Rensselaer Polytechnic Institute; Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>ThA06.5</td>
<td>AnySOS: An Anytime Algorithm for SOS Programming</td>
<td>Driggs, Derek; Fawzi, Hamza</td>
<td>University of Cambridge; University of Cambridge</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>ThA06.6</td>
<td>Annealing for Distributed Global Optimization</td>
<td>Swenson, Brian; Kar, Soummya; Poor, H. Vincent; Moura, Jose' M. F.</td>
<td>Princeton University; Carnegie Mellon University; Princeton University; Carnegie Mellon University</td>
</tr>
<tr>
<td>10:00-10:20</td>
<td>ThA07.1</td>
<td>Robotics IV (Regular Session)</td>
<td>Chair: Solo, Victor; Co-Chair: Xin, Xin</td>
<td>University of New South Wales; Okayama Prefectural University</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>ThA07.2</td>
<td>Numerical Methods for Stochastic Differential Equations in Stiefel Manifolds Via the Cayley Transform</td>
<td>Solo, Victor; Chirikjian, Gregory</td>
<td>University of New South Wales; Johns Hopkins University</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>ThA07.3</td>
<td>Energy Shaping Control with Virtual Spring and Damper for Powered Exoskeletons</td>
<td>Lin, Jianping; Divekar, Nikhil; Lv, Ge; Gregg, Robert D.</td>
<td>University of Texas, Dallas; University of Texas, Dallas; Carnegie Mellon University; University of Michigan</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>ThA07.4</td>
<td>Optimal Control of Piecewise-Smooth Control Systems</td>
<td>Poveda, Jorge I.</td>
<td>University of Colorado, Boulder</td>
</tr>
</tbody>
</table>

ThA06 - Mediterranean A3

ThA07 - Mediterranean A1

ThA07 - Université de Lorraine
Singular Perturbations, pp. 3046-3053.
Westenbroek, Tyler University of California, Berkeley
Xiong, Xiaobin California Institute of Technology
Ames, Aaron D. California Institute of Technology
Sastry, Shankar University of California, Berkeley

11:20-11:40 ThA07.5
Linear Controllability and Observability of N-Link Underactuated Planar Revolute Robot Moving in Constantly Rotating Frame in Horizontal Plane, pp. 3054-3059.
Xin, Xin Okayama Prefectural University
Izumi, Shin-saku Okayama Prefectural University
Yamasaki, Taiga Okayama Prefectural University
Lin, Wei Case Western Reserve University

11:40-12:00 ThA07.6
Optimal Stochastic Evasive Maneuvers Using the Schrodinger’s Equation, pp. 3060-3065.
Farokhi, Farhad University of Melbourne and CSIRO
Egerstedt, Magnus Georgia Institute of Technology

ThA08 Méditerranée 3
Estimation and Control of PDE Systems IV (Invited Session)
Chair: Fahroo, Fariba AFOSR
Co-Chair: Demetriou, Michael Wormer Polytechnic Institute A.
Organizer: Demetriou, Michael Wormer Polytechnic Institute A.
Organizer: Fahroo, Fariba AFOSR
Organizer: Le Gorrec, Yann Ensmm, Femto-St / As2m

10:00-10:20 ThA09.1
ThA08 (Regular Session)
Adaptive Boundary Observer Design for a Class of Nonlinear Wave PDEs with Uncertain Domain and Boundary Parameters (I), pp. 3066-3071.
Benabdellahi, Abdeljalil Université Ibn Tofail, Kénitra
Giri, Fouad University of Caen Normandie
Ahmed-Al, Tarek ENISCAEN
Krstic, Miroslav University of California, San Diego
El Fadil, Hassan Ibn Tofail University, Kénitra
Chaoui, F.Z. ENSET

10:20-10:40 ThA09.2
Direct Adaptive Control of Non-Minimum Phase Linear Infinite-Dimensional Systems in Hilbert Space Using a Zero Dynamics Estimator (I), pp. 3072-3079.
Balas, Mark Embry-Riddle Aeronautical University
Frost, Susan NASA Ames Research Center

10:40-11:00 ThA09.3
ISS Synthesis of Parabolic Systems with Uncertain Parameters Using In-Domain Sensing and Actuation (I), pp. 3080-3085.
Orlov, Yuriy CICESE
Autrique, Laurent ISTIA - University of Angers
Perez, Laetitia University of Nantes IUT

11:00-11:20 ThA09.4
Observer Design for a Coupled ODE-PDE System from a Wellbore Reservoir Drilling Model (I), pp. 3086-3091.
Camacho-Solorio, Leobardo University of California, San Diego

11:20-11:40 ThA09.5
Control Law Realification for the Feedback Stabilization of a Class of Diagonal Infinite-Dimensional Systems with Delay Boundary Control, pp. 3092-3097.
Lhachemi, Hugo University College Dublin
Shorten, Robert University College Dublin
Prieur, Christophe CNRS

11:40-12:00 ThA09.6
Hu, Weiwei University of Georgia
Boardman, Nicki Oklahoma State University
Mishra, Rohit Oklahoma State University

ThA09 Game Theory II (Regular Session)
Chair: Hayakawa, Tomohisa Tokyo Institute of Technology
Co-Chair: Hohmann, Soeren Karlsruhe Institute of Technology

10:00-10:20 ThA09.1
Learning Nash Equilibria in Monotone Games, pp. 3104-3109.
Tatarenko, Tatiana TU Darmstadt
Kamgarpour, Maryam ETH Zurich

10:20-10:40 ThA09.2
Valibegli, Amir University of California, San Diego
de Callafon, Raymond A. University of California, San Diego

10:40-11:00 ThA09.3
Social Welfare Improvement for Noncooperative Dynamical Systems with Tax/Subsidy Approach, pp. 3116-3121.
Yan, Yuyue Tokyo Institute of Technology
Hayakawa, Tomohisa Tokyo Institute of Technology

11:00-11:20 ThA09.4
Stability Analysis of Nash Equilibrium in Loss-Aversion-Based Noncooperative Dynamical Systems, pp. 3122-3127.
Yan, Yuyue Tokyo Institute of Technology
Hayakawa, Tomohisa Tokyo Institute of Technology
Thanomvajamun, Nutthanun Tokyo Institute of Technology

11:20-11:40 ThA09.5
Solution Sets for Inverse Non-Cooperative Linear-Quadratic Differential Games, pp. 3128-3133.
Inga, Jairo Karlsruhe Institute of Technology
Bischoff, Esther Karlsruhe Institute of Technology
Molloy, Timothy L. Queensland University of Technology
Flad, Michael Karlsruhe Institute of Technology
Hohmann, Soeren Karlsruhe Institute of Technology

11:40-12:00 ThA09.6
Relative Best Response Dynamics in Finite and Convex Network Games, pp. 3134-3139.
Govaert, Alain Rijksuniversiteit Groningen
ThA10

Novel Approaches to Traffic Estimation and Control Using Automated Vehicles (Invited Session)

Chair: Stern, Raphael
Co-Chair: Delle Monache, Maria Laura
Organizer: Stern, Raphael
Organizer: Delle Monache, Maria Laura

10:00-10:20 ThA10.1

Piacentini, Giulia University of Pavia
Ferrara, Antonella University of Pavia
Papamichal, Ioannis Technical University of Crete
Papageorgiou, Markos Technical University of Crete

10:20-10:40 ThA10.2
Stop-And-Go Wave Dissipation Using Accumulated Controlled Moving Bottlenecks in Multi-Class CTM Framework (I), pp. 3146-3151.

Cicic, Mladen KTH Royal Institute of Technology
Johansson, Karl H. KTH Royal Institute of Technology

10:40-11:00 ThA10.3
Lagrangian Models for Controlling Large-Scale Heterogeneous Traffic (I), pp. 3152-3157.

Molnar, Tamas Gabor University of Michigan
upadhyay, devesh Ford
Hopka, Mike Ford Motor Company
van Nieuwstadt, Michiel J. Ford Research and Innovation Center
Orosz, Gabor University of Michigan

11:00-11:20 ThA10.4
Conditions for Improving the Computational Efficiency of Decentralized Optimal Merging Controllers for Connected and Automated Vehicles, pp. 3158-3163.

Xiao, Wei Boston University
Cassandras, Christos G. Boston University

11:20-11:40 ThA10.5
Sample Average Approximation of CVaR-Based Wardrop Equilibrium in Routing under Uncertain Costs, pp. 3164-3169.

Cherukuri, Ashish University of Groningen

11:40-12:00 ThA10.6
Analysis of a Stochastic Model for Coordinated Platooning of Heavy-Duty Vehicles, pp. 3170-3175.

Xiong, Xi New York University
Xiao, Erdong New York University
Jin, Li New York University

ThA11

Estimation I (Regular Session)

Chair: Hjalmarsson, Häkan KTH Royal Institute of Technology

10:00-10:20 ThA11.1

Pfeffer, Martin Karlsruhe Institute of Technology
Krebs, Stefan Karlsruhe Institute of Technology
Hofmann, Felix Robert Bosch GmbH
Kupper, Martin Karlsruhe Institute of Technology
Hofmann, Soeren Karlsruhe Institute of Technology

10:20-10:40 ThA11.2

Rodrigues, Diogo KTH Royal Institute of Technology
Abdalmoaty, Mohamed KTH Royal Institute of Technology
Hjalmarsson, Häkan KTH Royal Institute of Technology

10:40-11:00 ThA11.3
Dynamic Set-Inversion Procedure to Design Interval-Based State Estimators for Discrete-Time LPV Systems, pp. 3190-3195.

Krebs, Stefan Institute of Control Systems, Karlsruhe Institute of Technology
Meslem, Nacim GIPSA-LAB, CNRS
Hofmann, Soeren Karlsruhe Institute of Technology

11:00-11:20 ThA11.4
Tuning-Free, Low Memory Robust Estimator to Mitigate GPS Spoofing Attacks, pp. 3196-3201.

Lee, Junhwan University of Texas, San Antonio
Taha, Ahmad University of Texas, San Antonio
Gatsis, Nikolaos University of Texas, San Antonio
Akopian, David University of Texas, San Antonio

11:20-11:40 ThA11.5

Zhang, wenhan School of Astronautics, Harbin Institute of Technology
Wang, Zhenhua Harbin Institute of Technology
Raiassi, Tarek Conservatoire National Des Arts Et Metiers
Shen, Yi Harbin Institute of Technology
Zhang, Fengdi Beijing Aerospace Automatic Control Institute
Xu, Min Beijing Aerospace Automatic Control Institute

11:40-12:00 ThA11.6
Proximity Moving Horizon Estimation for Linear Time-Varying Systems and a Bayesian Filtering View, pp. 3208-3213.

Gharbi, Meriem University of Stuttgart
Ebenbauer, Christian University of Stuttgart

ThA12

Research and Development on Control for Fusion Facilities (Invited Session)

Chair: Vu, Ngoc Minh Trang LCIS
Co-Chair: Nouailletas, Rémy Cea - Irfm
10:00-10:20 ThA13.1

Towards Robust and Scalable Power System State Estimation, pp. 3245-3252.

Jin, Ming
Molybog, Igor
Mohammadi Ghazi, Reza
Lavaei, Javad

University of California, Berkeley
University of California, Berkeley
University of California, Berkeley
University of California, Berkeley

10:20-10:40 ThA12.3

Model Predictive Control for Micro Grid Stabilisation in Case of Loss of Units, pp. 3266-3271.

Liu, Mingxi
Lestas, Ioannis

University of Utah
Université de La Réunion

11:00-11:20 ThA13.4

Chance-Constrained SPDS-Based Decentralized Control of Distributed Energy Resources, pp. 3272-3278.

Kasis, Andreas
Lestas, Ioannis

University of Cambridge
University of Cambridge

11:20-11:40 ThA12.4

Integrated Robust Control of Individual Scalar Variables in Tokamaks (I), pp. 3233-3238.

Pajares, Andres
Schuster, Eugenio

Lehigh University
Lehigh University

11:40-12:00 ThA13.6

Frequency Regulation with Thermostatic Load Participation in Power Networks, pp. 3279-3284.

Kasis, Andrés
Lestas, Ioannis

University of Cambridge
University of Cambridge

11:00-11:10 ThA12.2

van Berkel, Matthijs
Oosterwegel, Gerard
Anthonissen, Martijn
Zwart, Hans
Vandersteen, Gerd G.

Dutch Institute for Fundamental Energy Research
Eindhoven University of Technology
Eindhoven University of Technology
University of Twente
Vrije University Brussels

11:10-11:30 ThA12.5

Nonlinear PDE-Based Control of the Electron Temperature in H-Mode Tokamak Plasmas (I), pp. 3227-3232.

Mameche, Hamza
Witrant, Emmanuel
Prieur, Christophe

University Grenoble Alpes
Université Grenoble Alpes
CNRS

11:30-11:50 ThA12.6

Guaranteeing Disturbance Rejection and Control Signal Continuity for the Saturated Super-Twisting Algorithm, pp. 3285-3290.

Seeber, Richard
Hom, Martin

Graz University of Technology
Graz University of Technology

10:40-11:00 ThA13.3

Transactive Control Approach to Trip Optimization in Electric Railways, pp. 3260-3265.

D’Achiardi, David
Pilo de la Fuente, Eduardo
Annaswamy, Anuradha M.

Massachusetts Institute of Technology
Universidad Francisco de Vitoria
Massachusetts Institute of Technology

11:00-11:20 ThA14

Lyaunov Methods IV (Regular Session)

Chair: Petersen, Ian R.
Co-Chair: Seeber, Richard

Australian National University
Graz University of Technology

10:00-10:20 ThA14.1

Guaranteeing Disturbance Rejection and Control Signal Continuity for the Saturated Super-Twisting Algorithm, pp. 3285-3290.

Seeber, Richard
Hom, Martin

Graz University of Technology
Graz University of Technology

10:40-11:00 ThA14.3

Filter-Based Feedback Control for a Class of Markovian Open Quantum Systems, pp. 3297-3302.

Liu, Yanan
Dong, Daoyi
Petersen, Ian R.

University of New South Wales
University of New South Wales
Australian National University

10:40-11:00 ThA13.2

Frequency Regulation Using Sparse Learned Controllers in Power Grids with Variable Inertia Due to Renewable Energy, pp. 3253-3259.

Hidalgo-Gonzalez, Patricia
Henriquez-Auba, Rodrigo
Callaway, Duncan S.
Tomlin, Claire J.

University of California, Berkeley
University of California, Berkeley
University of California, Berkeley
University of California, Berkeley

10:20-10:40 ThA14.2

Seeber, Richard
Hom, Martin

Graz University of Technology
Graz University of Technology

11:00-11:20 ThA13.5

Chance-Constrained SPDS-Based Decentralized Control of Distributed Energy Resources, pp. 3272-3278.

Liu, Mingxi

University of Utah

11:20-11:40 ThA12.7

Lyapunov Methods IV (Regular Session)

Chair: Petersen, Ian R.
Co-Chair: Seeber, Richard

Australian National University
Graz University of Technology

10:00-10:20 ThA14.1

Guaranteeing Disturbance Rejection and Control Signal Continuity for the Saturated Super-Twisting Algorithm, pp. 3285-3290.

Seeber, Richard
Hom, Martin

Graz University of Technology
Graz University of Technology

10:40-11:00 ThA14.3

Filter-Based Feedback Control for a Class of Markovian Open Quantum Systems, pp. 3297-3302.

Liu, Yanan
Dong, Daoyi
Petersen, Ian R.

University of New South Wales
University of New South Wales
Australian National University
On the Optimal Control of Volterra Integro-Differential Equations, pp. 3340-3345.

External Constraint Handling for Solving Optimal Control Problems with Simultaneous Approaches and Interior Point Methods, pp. 3352-3357.

Optimization IV (Regular Session)

Chair: Clark, Andrew
Co-Chair: Shames, Iman

11:40-11:50
ThA16.1

Online Optimisation Using Zeroth Order Oracles, pp. 3364-3369.

Optimal Control I (Regular Session)

Chair: Mareels, Ivan
Co-Chair: Kerrigan, Eric C.

10:40-11:00
ThA15.4

Matroid-Constrained Approximately Supermodular Optimization for Near-Optimal Actuator Scheduling, pp. 3391-3398.

11:20-12:00
ThA16.5

A Submodular Optimization Approach to the Metric Traveling Salesman Problem with Neighborhoods, pp. 3383-3390.

11:40-12:00
ThA16.6

On the Optimal Control of Volterra Integro-Differential Equations, pp. 3340-3345.

Optimal Control I (Regular Session)

Chair: Mareels, Ivan
Co-Chair: Kerrigan, Eric C.

10:40-11:00
ThA15.4

Matroid-Constrained Approximately Supermodular Optimization for Near-Optimal Actuator Scheduling, pp. 3391-3398.

11:40-12:00
ThA16.6

On the Optimal Control of Volterra Integro-Differential Equations, pp. 3340-3345.

Optimal Control I (Regular Session)

Chair: Mareels, Ivan
Co-Chair: Kerrigan, Eric C.

10:40-11:00
ThA15.4

Matroid-Constrained Approximately Supermodular Optimization for Near-Optimal Actuator Scheduling, pp. 3391-3398.
Switched Systems IV (Regular Session)

Chair: Jungers, Raphaël M. Co-Chair: Daafouz, Jamal
University of Louvain Université de Lorraine, CRAN, CNRS

10:00:10:20 ThA17.1

Polyhedral Path-Complete Lyapunov Functions, pp. 3399-3404.
Athanassopoulos, Nikolaos Queen's University Belfast
Jungers, Raphaël M. University of Louvain

10:20:10:40 ThA17.2

Granzotto, Mathieu CNRS, CRAN, Université de Lorraine
Postoyan, Romain CNRS, CRAN, Université de Lorraine
Busoniu, Lucian Technical University of Cluj-Napoca
Nesic, Dragan University of Melbourne
Daafouz, Jamal Université de Lorraine, CRAN, CNRS

10:40:11:00 ThA17.3

A Nonlinear Switched Control Strategy for Permanent Magnet Synchronous Machines, pp. 3411-3416.
Egidio, Lucas N. School of Mechanical Engineering, UNICAMP
Deaecto, Grace S. FEM/UNICAMP
Hespanha, Joao P. University of California, Santa Barbara
Geromel, Jose C. UNICAMP

11:00:11:20 ThA17.4

Worst-Case Optimal Data-Driven Estimators for Switched Discrete-Time Linear Systems, pp. 3417-3422.
Dai, Tianyu Northeastern University
Sznajer, Mario Northeastern University

11:20:11:40 ThA17.5

Innocenti, Giacomo University of Firenze
Di Marco, Mauro University of Siena
Tesi, Alberto University of Firenze
Forti, Mauro University of Siena

11:40:12:00 ThA17.6

Efficient Identification of Error-In-Variables Switched Systems Via a Sum-Of-Squares Polynomial Based Subspace Clustering Method, pp. 3429-3434.
Ozbay, Bengisu Northeastern University
Campos, Octavio I. Northeastern University
Sznajer, Mario Northeastern University

ThA18

Estimation and Observer Design in Nonlinear Systems (Invited Session)
Chair: Zemouche, Ali CRAN UMR CNRS 7039 & INRIA

10:00:10:20 ThA18

Ribeiro, Alejandro University of Pennsylvania

Brivadis, Lucas LAGEPP, Université Lyon 1
Andrieu, Vincent Université de Lyon
Serres, Ulysse Université Claude Bernard Lyon 1

10:40:11:00 ThA18.2

Observer Design for Nonlinear Systems with Sampled and Transformed Measurements (I), pp. 3441-3446.
González de Cossio, Francisco Université Claude Bernard Lyon 1
Nadri, Madiha Université Claude Bernard Lyon 1
Dufour, Pascal Université de Lyon, Université Claude Bernard Lyon 1, CNRS

11:00:11:20 ThA18.4

An I&I Observer-Based Controller with Guaranteed Stability for Vehicles with Roll Dynamics, pp. 3453-3458.
Cisneros, Rafael Instituto Tecnológico Autónomo de México
Romero, Jose Guadalupe Instituto Tecnológico Autónomo de México
Ley-Rosas, Juan José Cinvestav Gdl
Maghenem, Mohamed Adlene University of California Santa Cruz

11:20:11:40 ThA18.5

Unified Hinf Observer for a Class of Nonlinear Lipschitz Systems: Application to a Real ER Automotive Suspension, pp. 3459-3464.
PHAM, Thanh-Phong University Grenoble Alpes, CNRS, Grenoble INP
Senanayake, Olivier Grenoble INP / GIPSA-Lab
Dugard, Luc CNRS

11:40:12:00 ThA18.6

Ha, Wonseok Kwangwon University
Back, Juhoon Kwangwon University

ThA19

Stochastic Systems II (Regular Session)
Chair: Tsiotras, Panagiotis Georgia Institute of Technology
Co-Chair: Scarcioni, Giordano Imperial College London

10:00:10:20 ThA19.1

Efficient Identification of Error-In-Variables Switched Systems Via a Sum-Of-Squares Polynomial Based Subspace Clustering Method, pp. 3429-3434.
Ozbay, Bengisu Northeastern University
Campos, Octavio I. Northeastern University
Sznajer, Mario Northeastern University

104
Prasdeski, Bary S. R. Centre National de La Recherche Scientifique, France

10:40-11:00 ThA19.3
Nonlinear Uncertainty Control with Iterative Covariance Steering, pp. 3484-3490.
Ridderhof, Jack Georgia Institute of Technology
Okamoto, Kauzhide Georgia Institute of Technology
Tsitos, Panagiotis Georgia Institute of Technology

11:00-11:20 ThA19.4
Universal Feedback Controllers and Inverse Optimality for Nonlinear Stochastic Systems, pp. 3491-3496.
Haddad, Wassim M. Georgia Institute of Technology
Jin, Xu University of Kentucky

11:20-11:40 ThA19.5
Input Hard Constrained Optimal Covariance Steering, pp. 3497-3502.
Okamoto, Kauzhide Georgia Institute of Technology
Tsitos, Panagiotis Georgia Institute of Technology

11:40-12:00 ThA19.6
Normal Form and Exact Feedback Linearisation of Nonlinear Stochastic Systems: The Ideal Case, pp. 3503-3508.
Mellone, Alberto Imperial College London
Scarditi, Giordano Imperial College London

10:20-10:40 ThA20.1
Tesi, Alessandro Technical University of Munich
Angeli, David Imperial College

10:40-11:00 ThA20.2
Voltage Regulation of a Power Distribution Network in a Radial Configuration with a Class of Sector-Bounded Droop Controllers, pp. 3515-3520.
Chong, Michelle S. KTH Royal Institute of Technology
Umsonst, David KTH Royal Institute of Technology
Sandberg, Henrik KTH Royal Institute of Technology

11:00-11:20 ThA20.3
Suttner, Raik University of Wuerzburg
Sun, Zhiyong Lund University

11:00-11:20 ThA20.4
Plug-And-Play Distributed Supervision Schemes for Decoupled Interconnected Dynamical Systems, pp. 3527-3532.

11:20-11:40 ThA20.5
Iterative Algorithms for Distributed Leader-Follower Model Predictive Control, pp. 3533-3539.
Ferraz, Henrique University of California, Santa Barbara
Hespanha, Joao P. University of California, Santa Barbara

11:40-12:00 ThA20.6
Hierarchical Model Decomposition for Distributed Design of Glocal Controllers, pp. 3540-3545.
Sasahara, Hampei KTH Royal Institute of Technology
Ishizaki, Takayuki Tokyo Institute of Technology
Imura, Jun-ichi Tokyo Institute of Technology
Sandberg, Henrik KTH Royal Institute of Technology
Johansson, Karl H. KTH Royal Institute of Technology
11:40-12:00 ThA21.6

Topology and Subsystem Parameter Based Verification for the Controllability/Observability of a Networked Dynamic System, pp. 3575-3580.
Zhou, Tong Tsinghua University, Beijing, 100084, CHINA

ThA22
Identification IV (Regular Session)
Chair: Sato, Kazuhiro Kitami Institute of Technology
Co-Chair: Weyer, Erik University of Melbourne

10:00-10:20 ThA22.1
Confidence Regions for Parameters of Errors-In-Variables Systems Using Sign Perturbed Sums, pp. 3581-3586.
Moravej Khorasani, Masoud University of Melbourne
Weyer, Erik University of Melbourne

10:20-10:40 ThA22.2
Granger Causality of Gaussian Signals from Quantized Measurements, pp. 3587-3592.
Ahmadi, Salman University of Melbourne, Australia
Nair, Girish N. University of Melbourne
Weyer, Erik University of Melbourne

10:40-11:00 ThA22.3
Riemannian Gradient-Based Online Identification Method for Linear Systems with Symmetric Positive-Definite Matrix, pp. 3593-3598.
Sato, Hiroyuki Kyoto University
Sato, Kazuhiro Kitami Institute of Technology

11:00-11:20 ThA22.4
Frequency Domain Maximum Likelihood Identification with Gaussian Input-Output Uncertainty, pp. 3599-3604.
Verbeke, Dieter Vrije Universiteit Brussel
Moravej Khorasani, Masoud University of Melbourne

11:20-11:40 ThA22.5
Nonlinearity Measures for Data-Driven System Analysis and Control, pp. 3605-3610.
Martin, Tim University of Stuttgart
Allgöwer, Frank University of Stuttgart

11:40-12:00 ThA22.6
Construction Methods of the Nearest Positive System, pp. 3611-3616.
Sato, Kazuhiro Kitami Institute of Technology
Takeda, Akiko University of Tokyo

ThA23
Machine Learning in Control, Theory and Applications I (Invited Session)
Chair: Gaudio, Joseph E. Massachusetts Institute of Technology
Co-Chair: Dibaji, Seyed Massachusetts Institute of Technology
Organizer: Gaudio, Joseph E. Massachusetts Institute of Technology
Organizer: Dibaji, Seyed Massachusetts Institute of Technology
Organizer: Gibson, Travis E. Harvard Medical School
Organizer: Annaswamy, Anuradha M. Massachusetts Institute of Technology

10:00-10:20 ThA23.1
Heterogeneous Formation Control of Multiple Rotorcrafts with Unknown Dynamics Using Reinforcement Learning (I), pp. 3617-3622.
Liu, Hao Beihang University
Peng, Fachun Beihang University
Modares, Hamidreza Michigan State University
Kiumarsi, Bahare University of Illinois, Urbana Champaign

10:20-10:40 ThA23.2
Sarkar, Tuvin Massachusetts Institute of Technology
Rakhlin, Alexander University of Pennsylvania
Dahleh, Munther A. Massachusetts Institute of Technology

10:40-11:00 ThA23.3
Kanellopoulos, Aris Georgia Institute of Technology
Vamvoudakis, Kyriakos G. Georgia Institute of Technology
Gupta, Vijay University of Notre Dame

11:00-11:20 ThA23.4
Non-Bayesian Social Learning with Uncertain Models Over Time-Varying Directed Graphs (I), pp. 3635-3640.
Uribe, Cesar Massachusetts Institute of Technology
Hare, James Army Research Laboratory
Kaplan, Lance Army Research Laboratory
Jadbabaie, Ali MIT

11:20-11:40 ThA23.5
Secure Linear Quadratic Regulator Using Sparse Model-Free Reinforcement Learning (I), pp. 3641-3647.
Kiumarsi, Bahare University of Illinois, Urbana Champaign
Basar, Tamer University of Illinois, Urbana Champaign

11:40-12:00 ThA23.6
Finite Sample Analysis of Stochastic System Identification (I), pp. 3648-3654.
Tsiamis, Anastasios University of Pennsylvania
Pappas, George J. University of Pennsylvania

ThA24
Machine Learning I (Regular Session)
Chair: Vidyasagar, Mathukumalli Indian Institute of Technology Hyderabad
Co-Chair: Paschalidis, Ioannis Boston University

10:00-10:20 ThA24.1
A Distributionally Robust Optimization Approach for Multivariate Linear Regression under the Wasserstein Metric, pp. 3655-3660.
Chen, Ruidi Boston University
ThA25.5
Robust Containment Control in Multi-Agent Systems with Common Coordinate Frames and Bearing Angle Measurements, pp. 3710-3717.
- Santilli, Matteo, University of Roma Tre
- Franceschelli, Mauro, University of Cagliari
- Gasparri, Andrea, University of Roma Tre

ThA25.6
Consensus of Heterogeneous Systems with Constraints in a Switching Network - a Governor Approach, pp. 3718-3723.
- Ong, Chong-Jin, National University of Singapore
- Djamari, Djali Wibowo, National University of Singapore

ThA26
Self-Tuning and Reinforcement Learning (Tutorial Session)
- Chair: Matni, Nikolai, University of Pennsylvania
- Co-Chair: Rantzer, Anders, Lund University
- Organizer: Matni, Nikolai, University of Pennsylvania
- Organizer: Rantzer, Anders, Lund University

Introduction to Control Theory for Reinforcement Learning (I).
- Rantzer, Anders, Lund University

From Self-Tuning Regulators to Reinforcement Learning and Back Again (I), pp. 3724-3740.
- Matni, Nikolai, University of Pennsylvania
- Proutiere, Alexandre, KTH Royal Institute of Technology
- Rantzer, Anders, Lund University
- Tu, Stephen, University of California, Berkeley

Optimally Controlling Unknown Discrete Systems (II).
- Proutiere, Alexandre, KTH Royal Institute of Technology

Optimization Based Approaches to Exploration/exploitation (II).
- Rantzer, Anders, Lund University

Concentration Bounds for System Identification (I), pp. 3741-3749.
- Matni, Nikolai, University of Pennsylvania
- Tu, Stephen, University of California, Berkeley

ThB01
Biological Applications (Regular Session)
- Chair: Rizzo, Alessandro, Politecnico di Torino
- Co-Chair: Srivastava, Vaibhav, Michigan State University

- Possieri, Corrado, Politecnico di Torino
- Rizzo, Alessandro, Politecnico di Torino

- Lima, Marcelo, Instituto Mauá de Tecnologia

Deterministic Construction of Bipolar Matrices for Compressed Sensing, pp. 3661-3663.
- Ranjan, Shashank, Indian Institute of Technology, Hyderabad, India
- Vidyasagar, Mathukumalli, Indian Institute of Technology Hyderabad

Convergence of Parameter Estimates for Regularized Mixed Linear Regression Models, pp. 3664-3669.
- Wang, Taiyao, Boston University
- Paschalidis, Ioannis Ch., Boston University

Deep Convolutional Networks in System Identification, pp. 3670-3676.
- Andersson, Carl, Uppsala University
- Ribeiro, Antônio, UFMG
- Tiels, Koen, Uppsala University
- Wahström, Niklas, Uppsala University
- Schön, Thomas (Bo), Uppsala University

- Hihn, Heinke, Ulm University
- Gottwald, Sebastian, Ulm University
- Braun, Daniel, Ulm University

Multi-Agent Systems IV (Regular Session)
Athéna

Chair: Franceschelli, Mauro, University of Cagliari
Co-Chair: Dimarogonas, Dimos V., KTH Royal Institute of Technology

10:00-10:20 ThA25.1
Herding an Adversarial Swarm in an Obstacle Environment, pp. 3685-3690.
- Chipade, Vishnu S., University of Michigan, Ann Arbor
- Panagou, Dimitra, University of Michigan, Ann Arbor

10:20-10:40 ThA25.2
Dynamic Consensus on the Median Value in Open Multi-Agent Systems, pp. 3691-3697.
- Sanal Dashti, Zohreh Al Zahra, University of Cagliari
- Seatzu, Carla, University of Cagliari
- Franceschelli, Mauro, University of Cagliari

10:40-11:00 ThA25.3
Control Barrier Functions for Multi-Agent Systems under Conflicting Local Signal Temporal Logic Tasks, pp. 3698-3703.
- Lindemann, Lars, KTH Royal Institute of Technology
- Dimarogonas, Dimos V., KTH Royal Institute of Technology

11:00-11:20 ThA25.4
On a Two Cutters and Fugitive Ship Differential Game, pp. 3704-3709.
- Pachter, Meir, AFIT/ENG
- Wasz, Patrick, US Air Force
Model Predictive Control of the Blood Glucose Concentration for Critically Ill Patients in Intensive Care Units, pp. 3762-3769.

Chair: Petreczky, Mihaly
Co-Chair: Castelan, Eugenio B.

Fault Tolerant Systems (Regular Session)
Chair: Zocca, Alessandro
Co-Chair: He, Wei

14:00-14:20
Resilient Control Design for Hybrid Systems against Switching and Data Injection Attacks, pp. 3854-3859.
Sun, Dawei
Hwang, Inseok

Yue, Xinling
He, Xuyu
Liu, Jinkun
He, Wei

14:40-15:00
Sensor Redundancy for Robustness in Nonlinear State Estimation, pp. 3865-3870.
Yang, Guitao
Rezaee, Hamed
Parisini, Thomas

Guo, Linqi
Liang, Chen
Zocca, Alessandro
Low, Steven
Wierman, Adam

Secure Networked Control Via Software Rejuvenation, pp. 3878-3884.
Griffioen, Paul
Romagnoli, Raffaele
Krogh, Bruce H.
Sinopoli, Bruno

15:40-16:00
Fallback Strategies in Operation Control of Microgrids with Communication Failures, pp. 3885-3891.
Loeser, Inga
Sampathrao, Ajay Kumar
Hofmann, Steffen
Raisch, Joerg

Distributed Sensing, Control and Automation (Invited Session)
Chair: Yang, Tao
Co-Chair: Ghosh, Bijoy
Organizer: Yang, Tao
Organizer: Ghosh, Bijoy
Organizer: Wu, Junfeng

14:00-14:20
Yu, Hao
Hao, Fei
Chen, Tongwen

14:20-14:40
Efficient Linear Sensor Fusion Over Multiple Lossy Channels with Local Observability, pp. 3898-3903.
Wu, Yuchi
Li, Yuzhe
Shi, Ling

14:40-15:00
Observer-Based Leader-Follower Tracking Control for High-Order Multi-Agent Systems with Limited Measurement Information (I), pp. 3904-3909.
Yan, Chuan
Fang, Huazhen

15:00-15:20
Distributed Consensus-Based Kalman Filtering for Estimation with Multiple Moving Targets (I), pp. 3910-3915.
Lian, Bosen
Wan, Yan
Zhang, Ya
Liu, Mushuang
Lewis, Frank L.
Abad, Alexandra
Setter, Tina

15:20-15:40
Gaussianity-Preserving Event-Based State Estimation with an FIR-Based Stochastic Trigger, pp. 3916-3921.
Schmitt, Eva Julia
Noack, Benjamin
Krippner, Wolfgang
Hanebeck, Uwe D.

15:40-16:00
Wielitzka, Mark
Ortmaier, Tobias

109
ThB06 Optimization Algorithms II (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Paper Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>A Second-Order Saddle Point Method for Time-Varying Optimization</td>
<td>Poincaré, pp. 3928-3935.</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>Gradient Based Restart FISTA</td>
<td>Alamo, Teodoro et al. pp. 3936-3941.</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive Optimality</td>
<td>Azizan Ruhi, Navid et al. pp. 3960-3965.</td>
</tr>
</tbody>
</table>

ThB07 Robotics V (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Paper Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>Robustness of Periodic Orbits of Impulsive Systems À La Poincaré</td>
<td>Veer, Sushant et al. pp. 3966-3971.</td>
</tr>
</tbody>
</table>

ThB08 Estimation and Control of PDE Systems V (Invited Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Paper Title</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>Distributed Modeling of Structural Systems Based on Finite Element Methods with Application to an Actuated Beam (I)</td>
<td>Heinke, Simon et al. pp. 4005-4010.</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>ThB08.4</td>
<td>Nonlinear Feedback Control of a Class of Semilinear Parabolic PDEs (I)</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>ThB08.6</td>
<td>Enthalpy-Based Full-State Feedback Control of the Stefan Problem with Hysteresis (I)</td>
</tr>
<tr>
<td>14:00-14:20</td>
<td>ThB09.1</td>
<td>When Smoothness Is Not Enough: Toward Exact Quantification and Optimization of the Price-Of-Anarchy</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>ThB09.2</td>
<td>A RISE-Based Distributed Robust Nash Equilibrium Seeking Strategy for Networked Games</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>ThB09.4</td>
<td>Zero-Sum Stochastic Games with Asymmetric Information</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>ThB09.5</td>
<td>Construction of the Barrier for Reach-Avoid Differential Games in Three-Dimensional Space with Four Equal-Speed Players</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>ThB09.6</td>
<td>Newton's Method and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games</td>
</tr>
<tr>
<td>14:00-14:20</td>
<td>ThB10.1</td>
<td>Control for Large Scale Traffic Networks (Invited Session)</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>ThB10.2</td>
<td>Model-Based Deep Reinforcement Learning for CACC in Mixed-Autonomy Vehicle Platoons (I)</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>ThB10.3</td>
<td>Robust Tracking Control Design for Fluid Traffic Dynamics (I)</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>ThB10.4</td>
<td>On Routing Drivers through Persuasion in the Long Run (I)</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>ThB10.5</td>
<td>Optimal Tolling for Heterogeneous Traffic Networks with Mixed Autonomy</td>
</tr>
</tbody>
</table>

Jin, Li
New York University

Wen, Yining
New York University

ThB11

Estimation II (Regular Session)

Chair: Farina, Francesco
University of Bologna

Co-Chair: Jauberthie, Carine
LAAS-CNRS

14:00-14:20 ThB11.1

Adaptive Input Estimation in Linear Dynamical Systems with Applications to Learning-From-Observations, pp. 4115-4120.

Curi, Sebastian Martin ETH Zürich

Levy, Kfir. Y. ETH Zürich

Krause, Andreas ETH Zurich

14:20-14:40 ThB11.2

Distributed Set Membership Estimation with Time-Varying Graph Topology, pp. 4121-4126.

Farina, Francesco University of Bologna

Garulli, Andrea University of Siena

Giannitrapani, Antonio University of Siena

14:40-15:00 ThB11.3

Unique Maximum Likelihood Localization of Nuclear Sources, pp. 4127-4132.

Anderson, Brian D.O. Australian National University/NICTA

Dasgupta, Soura University of Iowa

Baidoo-Williams, Henry Ernest Amazon

Anjum, Md Fahim University of Iowa

Mudumbai, Raghuraman University of Iowa

15:00-15:20 ThB11.4

Distributed Secure State Estimation Using Diffusion Kalman Filters and Reachability Analysis, pp. 4133-4139.

Alanwar, Amr Technische Universität München

Said, Hazem Ain Shams University

Althoff, Matthias Technische Universität München

15:20-15:40 ThB11.5

Zero-Order Moving Horizon Estimation, pp. 4140-4146.

Baumgärtner, Katrin University of Freiburg

Zanelli, Andrea University of Freiburg

Diehl, Moritz University of Freiburg

15:40-16:00 ThB11.6

Optimal Experiment Design for Bounded-Error Estimation of Nonlinear Models, pp. 4147-4154.

Denis-Vidal, Lilianne University of Compiègne

Jauberthie, Carine LAAS-CNRS

Kieffer, Michel Université Paris-Sud

ThB12

Communication Networks (Regular Session)

Chair: Malabre, Michel CNRS

Co-Chair: Chen, Wei Hong Kong University of Science and Technology

14:00-14:20 ThB12.1

Learning Arrival Rates to Improve Common Information Based Multiple Access Protocol, pp. 4155-4160.

Vasal, Deepanshu University of Michigan, Ann Arbor

14:20-14:40 ThB12.2

Stabilizability of Discrete-Time SISO System Using MIMO Communication, pp. 4161-4165.

Srazhidinov, Radik Hong Kong University of Science and Technology

Chen, Wei Hong Kong University of Science and Technology

Qiu, Li Hong Kong University of Science and Technology

14:40-15:00 ThB12.3

UAV Trajectory Planning for Delay Tolerant Communications, pp. 4166-4171.

Bonilla Licea, Daniel Université Internationale de Rabat

Bonilla, Moises E. CINVESTAV-IPN

Ghogho, Mounir International University of Rabat

Malabre, Michel CNRS-UMR6004-CD0962

15:00-15:20 ThB12.4

Efficient Consensus-Based Formation Control with Discrete-Time Broadcast Updates, pp. 4172-4177.

Molinari, Fabio Technical University Berlin

Raisch, Joerg Technical University Berlin

15:20-15:40 ThB12.5

Soleymani, Touraj KTH Royal Institute of Technology

Baras, John S. University of Maryland

Johansson, Karl H. KTH Royal Institute of Technology

15:40-16:00 ThB12.6

Khojasteh, Mohammad Javad University of California, San Diego

Hedayatpour, Mojtaba DOT Technology Corporation

Franceschetti, Massimo University of California, San Diego

ThB13

Control and Demand Response in Smart Grids (Invited Session)

Chair: Dvorkin, Yury New York University

Co-Chair: Deka, Deepjyoti Los Alamos National Lab

Organizer: Dvorkin, Yury New York University

Organizer: Deka, Deepjyoti Los Alamos National Lab

14:00-14:20 ThB13.1

Benenati, Emilio ETH Zürich

Colombo, Marcello McGill University

Dall’Anese, Emiliano University of Colorado, Boulder
ThB13.2

Kullback-Leibler-Quadratic Optimal Control of Flexible Power Demand (I), pp. 4195-4201.

Cammarata, Neil
Busc, Ana
Ji, Yuting
Meyn, Sean P.

14:40-15:00

Mitigation of Coincident Peak Charges Via Approximate Dynamic Programming (I), pp. 4202-4207.

Dowling, Chase
Zhang, Baosen

15:00-15:20

Aggregate Capacity for TCLs Providing Virtual Energy Storage with Cycling Constraints (I), pp. 4208-4215.

Coffman, Austin
Busc, Ana
Baroah, Prabir

15:20-15:40

ThB13.3

El Chamie, Mahmoud
Ren, Lingyu
Manikantan Shila, Devu

15:40-16:00

A Distributionally Robust Joint Chance Constraint Approach to Smart Charging of Plug-In Electric Vehicles, pp. 4222-4227.

Casini, Marco
Vicino, Antonio
Zanvettor, Giovanni Gino

16:00-16:20

ThB13.4

Oracle-Based Economic Predictive Control, pp. 4246-4251.

Manzano, Jose Maria
nadales, Juan
Muñoz de la Peña, David
Limon, Daniel

15:00-15:20

ThB13.5

A Lyapunov-Based Approach to Exploit Asymmetries in Robotic Dual-Arm Task Resolution, pp. 4252-4258.

Rodrigues Marcal de Almeida, Diogo
Karayiannidis, Yiannis

15:40-16:00

ThB13.6

A Novel Passivity-Based Trajectory Tracking Control for Conservative Mechanical Systems, pp. 4259-4266.

Mahoney, Robert
Australian National University,

15:00-15:20

ThB14

Optimal Control II (Regular Session)

Nonlinear Feedback (Regular Session)

Chair: Mahony, Robert
Co-Chair: Khorrami, Farshad

14:00-14:20

Asymptotic Tracking Via Funnel Control, pp. 4228-4233.

Lee, Jin Gyu
Trenn, Stephan

14:20-14:40

Interconnection through U-Average Passivity in Discrete Time, pp. 4234-4239.

Moreschini, Alessio
Mattoni, Mattia
Monaco, Salvatore
Normand-Cyrot, Dorothée

14:40-15:00

Krishnamurthy, Prashanth
Khorrami, Farshad
NYU Tandon School of Engineering

15:00-15:20

Faedo, Nicolás
Garcia Violini, Demián
Scarcioni, Giordano

15:40-16:00

Mücke, Nikolaj Takata
Hjuler Christiansen, Lasse
Engsig-Karup, Allan Peter
Jorgensen, John Bagterp

14:00-14:20

Torque Control of a Hydrostatic Transmission Applied to a Wheel Loader, pp. 4273-4279.

Zips, Patrik
Lobe, Amadeus Cosimo
Trachte, Adrian
Kugi, Andreas

14:20-14:40

Optimal Multi-Agent Persistent Monitoring of the Uncertain State of a Finite Set of Targets, pp. 4280-4285.

Pinto, Samuel C.
Andersson, Sean B.
Hendrickx, Julien M.
Cassandras, Christos G.

15:00-15:20

113
ThB15.5

- Cichella, Venanzio, University of Iowa
- Kammer, Isaac, Naval Postgraduate School
- Walton, Claire, Naval Postgraduate School, Monterey, CA
- Hovakimyan, Naira, University of Illinois, Urbana-Champaign
- Pascoal, Antonio Manuel, Inst. Superior Tecnico

15:40-16:00 ThB15.6

- Borkar, Vivek S., Indian Institute of Technology
- Gaitsgory, Vladimir, Macquarie University
- Shvartsman, Ilya, Penn State Harrisburg

Rhodes AB

ThB16: Numerical Methods for Real-Time Model Predictive Control I (Invited Session)

- Chair: Kerrigan, Eric C., Imperial College London
- Co-Chair: Nie, Yuanbo, Imperial College London
- Organizer: McInerney, Ian, Imperial College London
- Organizer: Kerrigan, Eric C., Imperial College London
- Organizer: Nie, Yuanbo, Imperial College London

14:00-14:20 ThB16.1

An Iterative Horizon-Splitting Method for Model Predictive Control (I), pp. 4304-4310.

- Deng, Haoyang, Kyoto University
- Ohtsuka, Toshiyuki, Kyoto University

14:20-14:40 ThB16.2

Alternating Direction of Multipliers Method for Block Circulant Model Predictive Control (I), pp. 4311-4316.

- Kempf, Idris, University of Oxford
- Goluart, Paul J., University of Oxford
- Duncan, Stephen, University of Oxford

14:40-15:00 ThB16.3

- Åström, Daniel, Linköping University
- Axehil, Daniel, Linköping University

15:00-15:20 ThB16.4

QPALM: A Newton-Type Proximal Augmented Lagrangian Method for Quadratic Programs (I), pp. 4325-4330.

- Hermans, Ben, Katholieke Universiteit Leuven
- Themelis, Andreas, Katholieke Universiteit Leuven
- Patrinos, Panagiotis, Katholieke Universiteit Leuven

15:20-15:40 ThB16.5

- McInerney, Ian, Imperial College London
- Kerrigan, Eric C., Imperial College London

Rhodes EF

ThB18: Security in Cyber-Physical Systems I (Invited Session)

- Chair: Ren, Xiaoliang, KTH
- Co-Chair: Sinopoli, Bruno, Washington University in St Louis
- Organizer: Ren, Xiaoliang, Shanghai University
A Network Monitoring Game with Heterogeneous Component Criticality Levels (I), pp. 4379-4384.
Milosevic, Jezdimir KTH Royal Institute of Technology
Dahan, Mathieu Georgia Institute of Technology
Amin, Saurabh Massachusetts Institute of Technology
Sandberg, Henrik KTH Royal Institute of Technology

14:20-14:40 ThB18.1
Optimal Stealthy Attacks on Actuators for Strictly Proper Systems, pp. 4385-4390.
Teixeira, André M. H. Uppsala University

14:40-15:00 ThB18.3
Blanchin, Gianluca University of California, Riverside
Liu, Yin-Chen University of California, Riverside
Pasqualetti, Fabio University of California, Riverside

15:00-15:20 ThB18.4
Satishanandan, Bharadwaj Texas A&M University
Kumar, P. R. Texas A&M University

15:40-16:00 ThB18.6
Risk and Security Tradeoffs in Graphical Coordination Games, pp. 4409-4414.
Paarporn, Keith University of California, Santa Barbara
Alizadeh, Mahnoosh University of California Santa Barbara
Marden, Jason R. University of California, Santa Barbara

ThB19
Stochastic Systems III (Regular Session)
Chair: Wswniewski, Rafal Aalborg University
Co-Chair: Osareh, Hamid University of Vermont

14:00-14:20 ThB19.1
Mean Stability of a Class of Two-Time-Scale Markov Jump Linear Systems, pp. 4415-4420.
dos Santos, Felipe Otávio National Laboratory for Scientific Computing-LNCC
Todorov, Marcos LNCC
Fragoso, Marcelo Lncc / Mct

14:20-14:40 ThB19.2
Robustness Margins for Continuous-Time Markov Jump Linear Systems with Uncertain Transition Rates, pp. 4421-

14:40-15:00 ThB19.3
Semi-Parametric Uncertainty Bounds for Binary Classification, pp. 4427-4432.
Csáj, Balázs SZTAKI
Tamás, Ambrus Institute for Computer Science and Control, Hungarian Academy Of

15:00-15:20 ThB19.4
Bujorianu, Luminita Manuela University of Strathclyde
Wniewiaski, Rafal Aalborg University

15:20-15:40 ThB19.5
Altschuler, Jason MIT
Parrilo, Pablo A. Massachusetts Institute of Technology

15:40-16:00 ThB19.6
Quasilinear Control of Feedback Systems with Multivariate Nonlinearities, pp. 4446-4452.
Brahma, Sarnaduti University of Vermont
Ossareh, Hamid University of Vermont

Rhodes 10
Distributed Control II (Regular Session)
Chair: Zelazo, Daniel Technion - Israel Institute of Technology
Co-Chair: Mylvaganam, Imperial College London
Thulasi

14:00-14:20 ThB20.1
Price Control for Heterogeneous Thermostatically Controlled Loads in Communication and Computation Delay Environments, pp. 4453-4458.
Zou, Suli Beijing Institute of Technology
chen, zhe EPFL
Lygeros, John ETH Zurich

14:20-14:40 ThB20.2
Maximum Hands-Off Distributed Bearing-Based Formation Control, pp. 4459-4464.
Ikeda, Takuya Kyoto University
Zelazo, Daniel Technion - Israel Institute of Technology
Kashima, Kenji Kyoto University

14:40-15:00 ThB20.3
Robust Nonlinear Consensus Seeking, pp. 4465-4470.
Stankovic, Srdjan S. University of Belgrade
Beko, Marko COPELABS, Universidade Lusófona de Humanidades e Tecnologias
Stankovic, Milos S. Vlatacom Institute Ltd

Vlahakis, Eleftherios City, University of London
Dritsas, Leonidas ASPETE
Halikias, George City University

15:00-15:20 ThB20.4

A Game Theoretic Framework for Distributed Control of Multi-Agent Systems with Acyclic Communication Topologies, pp. 4477-4482.

Cappello, Domenico Imperial College London
Mylvaganam, Thulasi Imperial College London

15:20-15:40 ThB20.5

Output-Feedback Formation Tracking of Second-Order Multi-Agent Systems with Asynchronous Variable Sampled Data, pp. 4483-4488.

Ajwad, Syed Ali Université de Poitiers
Moulay, Emmanuel Université de Poitiers
Defoort, Michael UVHC
Menard, Tomas University of Caen
Coirault, Patrick ENSIP-LIAS

15:40-16:00 ThB20.6

Networked Control Systems II (Regular Session)

Chair: Altafini, Claudio Linkoping University
Co-Chair: Knorn, Steffi Uppsala University

14:00-14:20 ThB21.1

The Effect of Uniform Quantization on Parameter Estimation of Compound Distributions, pp. 4489-4494.

Seleulluiev, Ruslan Uppsala University
Knorn, Steffi Uppsala University
Ahlen, Anders Uppsala University

14:20-14:40 ThB21.2

Feng, Yu Zhejiang University of Technology
Chen, Zhuoming Zhejiang University of Technology

14:40-15:00 ThB21.3

A Dynamical Approach to Privacy Preserving Average Consensus, pp. 4501-4506.

Altafini, Claudio Linkoping University

15:00-15:20 ThB21.4

Determination of Security Index for Linear Cyber-Physical Systems Subject to Malicious Cyber Attacks, pp. 4507-4513.

Baniamerian, Amir Concordia University
Khorasani, Khoshyar Concordia University
Meskin, Nader Qatar University

15:20-15:40 ThB21.5

Networked Control of Coupled Subsystems: Spectral Decomposition and Low-Dimensional Solutions, pp. 4514-4520.

Gao, Shuang McGill University
Mahajan, Aditya McGill University

15:40-16:00 ThB21.6

Finite Time Semistability and Consensus in Networks with

Communication Uncertainty, pp. 4521-4526.

Haddad, Wassim M. Georgia Institute of Technology
Rajpurohit, Tanmay Georgia Institute of Technology
Jin, Xu University of Kentucky

ThB22

Theoretical Foundations for the Representation and Identification of Dynamic Networks I (Invited Session)

Chair: Van den Hof, Paul M. Eindhoven University of Technology
Co-Chair: Warnick, Sean Brigham Young University
Organizer: Van den Hof, Paul M. J. Eindhoven University of Technology
Organizer: Warnick, Sean Brigham Young University

14:00-14:20 ThB22.1

Solo, Victor University of New South Wales

14:20-14:40 ThB22.2

Kivits, E.M.M. (Lizan) Eindhoven University of Technology
Van den Hof, Paul M. J. Eindhoven University of Technology

15:00-15:20 ThB22.3

Yue, Zuogong University of New South Wales
Thunberg, Johan Halmstad University
Goncalves, Jorge University of Luxembourg

15:20-15:40 ThB22.4

Corruption Detection in Networks of Bi-Directional Dynamical Systems, pp. 4545-4550.

Subramanian, Venkat Ram University of Minnesota
Lamperski, Andrew University of Minnesota
Salapaka, Muriel V. University of Minnesota

15:40-16:00 ThB22.5

Nugroho, Sebastian Adi University of Texas, San Antonio
Taha, Ahmad University of Texas, San Antonio

15:40-16:00 ThB22.6

Strong Structural Controllability of Signed Networks, pp. 4557-4562.

Mousavi, Shima Sadat Sharif University of Technology
Haeri, Mohammad Sharif University of Technology
Mesbahi, Mehran University of Washington

ThB23

Machine Learning in Control, Theory and Applications II (Invited Session)

Chair: Annaswamy, Anuradha M. Massachusetts Institute of Technology
Co-Chair: Gibson, Travis E. Harvard Medical School
Organizer: Gaudio, Joseph E. Massachusetts Institute of Technology
Connections between Adaptive Control and Optimization in Machine Learning (I), pp. 4563-4568.

Gaudio, Joseph E. Massachusetts Institute of Technology
Gibson, Travis E. Harvard Medical School
Annaswamy, Anuradha M. Massachusetts Institute of Technology

14:20-14:40 ThB23.1
Shared Linear Quadratic Regulation Control: A Reinforcement Learning Approach (I), pp. 4569-4576.

Abu-Khalaf, Murad Massachusetts Institute of Technology
Karaman, Sertac Massachusetts Institute of Technology
Rus, Daniela MIT

14:40-15:00 ThB23.2

Pauli, Patricia Universität Stuttgart
Dibaji, Seyed Mehran Massachusetts Institute of Technology
Annaswamy, Anuradha M. Massachusetts Institute of Technology
Chakraborty, Aranya North Carolina State University

15:00-15:20 ThB23.3
Cause Mining and Controller Synthesis with STL, pp. 4589-4594.

Saglam, Irmak Middle East Technical University
Aydin Gol, Ebru Middle East Technical University

15:40-16:00 ThB23.4

Varnai, Peter KTH Royal Institute of Technology
Dimarogonas, Dimos V. KTH Royal Institute of Technology

14:00-14:20 ThB24
Machine Learning II (Regular Session)

Chair: Peet, Matthew M. Arizona State University
Co-Chair: alimo, shahrouz NASA Jet Propulsion Laboratory (JPL)

14:00-14:20 ThB24.1
Transforming Policy Via Reward Advancement, pp. 4609-4614.

Wu, Guojun WPI
Li, Yanting Worcester Polytechnic Institute (WPI)
Luo, Jun Shenzhen Institutes of Advanced Technology

14:40-15:00 ThB24.2
Inferring Particle Interaction Physical Models and Their Dynamical Properties, pp. 4615-4621.

Matei, Ion Palo Alto Research Center
Mavridis, Christos University of Maryland
Baras, John S. University of Maryland
Zhenirovskyy, Maksym Palo Alto Research Center

15:00-15:20 ThB24.3
Using SDP to Parameterize Universal Kernel Functions, pp. 4622-4629.

Colbert, Brendon Arizona State University
Peet, Matthew M. Arizona State University

15:20-15:40 ThB24.4

Yekkehkhany, Ali University of Illinois, Urbana Champaign
Arian, Ebrahim University of Illinois, Urbana Champaign
Hajiesmaili, Mohammad University of Massachusetts, Amherst
Nagi, Rakesh University of Illinois, Urbana Champaign

15:40-16:00 ThB24.5
Delaunay-Based Derivative-Free Optimization Via Global Surrogates with Safe and Exact Function Evaluations, pp. 4636-4641.

Zhao, Muhan University of California, San Diego
Alimo, Shahrouz NASA Jet Propulsion Laboratory (JPL)
Beyhaghi, Pooriya University of California, San Diego
Bewley, Thomas University of California, San Diego

14:00-14:20 ThB25
Decentralized Control (Regular Session)

Chair: Fridman, Emilia Tel-Aviv University
Co-Chair: Cannon, Mark University of Oxford

Decentralized Predictor Feedback of Large-Scale Systems under Input Delays, pp. 4642-4647.

Zhu, Yang Zhejiang University
Fridman, Emilia Tel-Aviv University

14:20-14:40 ThB25.2
A Port-Hamiltonian Approach to Plug-And-Play Voltage and Frequency Control in Islanded Inverter-Based AC Microgrids, pp. 4648-4655.
ThB26

Autonomous Vehicles and Traffic Control in Mixed Autonomy Environments (Tutorial Session)

Chair: Delle Monache, Maria Laura
Co-Chair: Sprinkle, Jonathan
Organizer: Delle Monache, Maria Laura
Organizer: Sprinkle, Jonathan
Organizer: Vasudevan, Ramanarayan
Organizer: Work, Daniel B.

16:30-16:35 ThB26.1

Autonomous Vehicles: From Vehicular Control to Traffic Control (I), pp. 4680-4696.

Delle Monache, Maria Laura
Sprinkle, Jonathan
Vasudevan, Ramanarayan
Work, Daniel B.

16:35-17:05 ThB26.2

Techniques for Online Verification of Autonomous Vehicle Control (I)*.

Vasudevan, Ramanarayan

17:05-17:35 ThB26.3

Realistic Control & Sensing for Autonomous Vehicles (I)*.

Sprinkle, Jonathan

17:35-18:05 ThB26.4

Traffic Modeling (I)*.

Delle Monache, Maria Laura

18:05-18:30 ThB26.5

Eulerian to Lagrangian Traffic Estimation & Control (I)*.

Work, Daniel B.

19:00-19:30 ThB26.6

Control Theory in Neuroscience (Invited Session)

Chair: Singh, Abhyudai
Co-Chair: Pequito, Sergio
Organizer: Singh, Abhyudai
Organizer: Chaillet, Antoine
Organizer: Jafarian, Matin

16:30-16:50 ThC01.1

A Framework to Control Functional Connectivity in the Human Brain (I), pp. 4697-4704.

Menara, Tommaso
Baggio, Giacomo
Bassett, Danielle
Pasqualetti, Fabio

16:50-17:10 ThC01.2

A Separation Principle for Discrete-Time Fractional-Order Dynamical Systems and Its Implications to Closed-Loop Neurotechnology, pp. 4705-4710.

Chatterjee, Sarthak
Romero, Orlando
Pequito, Sergio

17:10-17:30 ThC01.3

Synchronization of Quadratic Integrate-And-Fire Spiking Neurons: Constant versus Voltage-Dependent Couplings, pp. 4711-4716.

Jafarian, Matin
Johansson, Karl H.

17:30-17:50 ThC01.4

On Phase Reduction and Time Period of Noisy Oscillators (I), pp. 4717-4722.

Aminzare, Zahra
Holmes, Philip
Srivastava, Vaibhav

17:50-18:10 ThC01.5

Franci, Alessio
Drion, Guillaume
Sepulchre, Rodolphe

18:10-18:30 ThC01.6

Vahdat, Zahra
Xu, Zikai
Singh, Abhyudai

18:30-19:05 ThC01.7

Control Applications (Regular Session)

Chair: Rapaport, Alain

19:05-19:30 ThC01.8
Identification of Outliers in Graph Signals, pp. 4769-4776.

Gopalakrishnan, Karthik Massachusetts Institute of Technology
Li, Max Massachusetts Institute of Technology
Balakrishnan, Hamsa Massachusetts Institute of Technology

Identification of Outliers in Graph Signals, pp. 4769-4776.

Gopalakrishnan, Karthik Massachusetts Institute of Technology
Li, Max Massachusetts Institute of Technology
Balakrishnan, Hamsa Massachusetts Institute of Technology

On Active Disturbance Rejection Based Path Following Control for Unmanned Roller, pp. 4791-4796.

Chen, Sen Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Kumar, Harshat University of Pennsylvania
Paternain, Santiago University of Pennsylvania
Ribeiro, Alejandro University of Pennsylvania

Navioation of a Quadratic Potential with Ellipsoid Obstacles, pp. 4777-4784.

Chen, Fei KTH Royal Institute of Technology
Dimarogonas, Dimos V. KTH Royal Institute of Technology

Consensus Control for Leader-Follower Multi-Agent Systems under Prescribed Performance Guarantees, pp. 4785-4790.

Chen, Fei KTH Royal Institute of Technology
Dimarogonas, Dimos V. KTH Royal Institute of Technology

Safe Policy Synthesis in Multi-Agent POMDPs Via Discrete-Time Barrier Functions, pp. 4797-4803.

Ahmadi, Mohamadreza California Institute of Technology
Singletary, Andrew Georgia Institute of Technology
Burdict, Joel W. California Institute of Technology
Ams, Aaron D. California Institute of Technology

Dynamic Boundary Guarding against Radially Incoming Targets, pp. 4804-4809.

Bajaj, Shivam Michigan State University
Bopardikar, Shaunak D. Michigan State University

Reachability-Based Safety Guarantees Using Efficient Initializations, pp. 4810-4816.

Herbert, Sylvia University of California, Berkeley
Bansal, Somil University of California, Berkeley
Ghosh, Shromona University of California, Berkeley
Tomlin, Claire J. University of California, Berkeley

Fuzzy Systems and Evolutionary Computing (Regular Session)
Chair: Campos, Victor Universidade Federal de Minas Gerais
Co-Chair: Chadli, Mohammed Université de Picardie-Jules Verne

Vehicle Sideslip Angle Estimation Based on Switched Fuzzy Model, pp. 4817-4822.

Zhang, Qian Harbin Institute of Technology
Liu, Zhiyuan Harbin Institute of Technology
Gu, mingqin Alibaba Group
Zhao, chunming Alibaba Group
Jia, Fengjiao Harbin Institute of Technology

Gomes, Izabella O. University of Campinas
Tognetti, Eduardo Stockler University of Brasilia
Olivera, Ricardo C. L. F. University of Campinas - UNICAMP
Peres, Pedro L. D. University of Campinas

Development of Dynamic Multi-Objective Feature Extraction Optimization Method to Detect H/OD Impact Damages, pp. 4835-4840.

Xue, Ting School of Automation Engineering, University of Electronic Science and Technology of China
Yin, Chun University of Electronic Science and Technology of China
Huang, Xuegang Aerodynamics Institute, China Aerodynamics Research and Development
Dadras, Sara Ford Motor Company
Cheng, Yuhua University of Electronic Science and Technology of China
Dadras, Soodeh Utah State University

On the Particle Swarm Optimization Improvement Using Time Delay Auto Synchronization, pp. 4841-4846.

Tomaszek, Lukas VSB-TU Ostrava
Zelinka, Ivan VSB-TU Ostrava
Chadli, Mohammed University of Paris-Saclay

A Proposal of the “Group Egogram” for Group Work Aptitude Analysis, pp. 4847-4851.

Matsuki, Hirotom National Institute of Technology, Kumamoto College
Ohki, Makoto National Institute of Technology, Kumamoto College

ThC05 Energy Systems (Regular Session)

Chair: Diehl, Moritz University of Freiburg
Co-Chair: Almassalkhi, Mads University of Vermont

16:30-17:00 ThC05.1

An Adaptive Passivity-Based Controller for a Wind Energy Conversion System, pp. 4852-4857.

Cisneros, Rafael Instituto Tecnológico Autónomo de México
Gao, Rui North Carolina State University
Ortega, Romeo LSS-SUPELEC

Convex Inner Approximation of the Feeder Hosting Capacity Limits on Dispatchable Demand, pp. 4858-4864.

Almassalkhi, Mads University of Vermont

17:10-17:30 ThC05.2

De Schutter, Jochem ALU Freiburg
Leuthold, Rachel University of Freiburg
Bronnenmeyer, Thilo Kitewarms GmbH
Paelinck, Reinhart Kitewarms Ltd
Diehl, Moritz University of Freiburg

17:30-17:50 ThC05.3

Kim, Eugene University of Michigan
Shin, Kang G. University of Michigan

17:50-18:10 ThC05.4

Zlotnik, Anatoly Los Alamos National Laboratory
Sundar, Kaarthik Los Alamos National Laboratory
Rudkevich, Alexandr Newton Energy Group
Beylin, Alexandr Newton Energy Group
Li, Xindi Tabors Caramanis Rudkevich

18:10-18:30 ThC05.5

Fuzzy-Variable Gain Super Twisting Algorithm Control Design for Direct-Drive PMSG Wind Turbines, pp. 4885-4890.

Benzaouia, Soufyane LCGM - Université Mohamed Premier - Oujda / MIS - Université De
Rabhi, Abdelhamid MIS
Zouggar, Smail University Mohammed First Oujda

ThC06 Mediterranean A3

Optimization Algorithms III (Regular Session)

Chair: Cucuzzella, Michele University of Groningen
Co-Chair: Hu, Guoqiang Nanyang Technological University

16:30-16:50 ThC06.1

QPDAK: Dual Active Set Solver for Mixed Constraint Quadratic Programming, pp. 4891-4897.

Fält, Mattias Lund University
Giselsson, Pontus Lund University

16:50-17:10 ThC06.2

On the Performance of Exact Diffusion Over Adaptive Networks, pp. 4898-4903.

Yuan, Kun University of California, Los Angeles
Alghunaim, Sulaiman A. University of California, Los Angeles
Ying, Bicheng University of California, Los Angeles
Sayed, Ali H. EPFL

17:10-17:30 ThC06.3
Charging Plug-In Electric Vehicles As a Mixed-Integer Aggregative Game, pp. 4904-4909.

Cenedese, Carlo
University of Groningen

Fabiani, Filippo
Delft University of Technology

Cucuzzella, Michele
University of Groningen

Schepen, Jacquelien M.A.
University of Groningen

Cao, Ming
University of Groningen

Grammatico, Sergio
Delft University of Technology

17:30-17:50
ThC06.4

Randomized Gradient-Free Distributed Online Optimization with Time-Varying Objective Functions, pp. 4910-4915.

Pang, Yipeng
Nanyang Technological University

Hu, Guoqiang
Nanyang Technological University

17:50-18:10
ThC06.5

Chordal Decomposition in Rank Minimized Semidefinite Programs with Applications to Subspace Clustering, pp. 4916-4921.

Miller, Jared
Northeastern University

Zheng, Yang
University of Oxford

Rog-Solvas, Biel
Northeastern University

Sznaiers, Mario
Northeastern University

Papachristodoulou, Antonis
University of Oxford

18:10-18:30
ThC06.6

SPSA Method Using Diagonalized Hessian Estimate, pp. 4922-4927.

Sun, Shiqing
Johns Hopkins University

Spall, James C.
Johns Hopkins University

18:30-18:50
ThC06.7

ThC07 (Regular Session)

Aerospace

Chair: Invernizzi, Davide
Politecnico di Milano

Co-Chair: Louembet, Christophe
LAAS-CNRS

16:30-16:50
ThC07.1

Sliding Mode Control Applied to a Multivariate Underactuated Control Moment Gyroscope, pp. 4928-4933.

Toriumi, Fabio
Polytechnic School of University of São Paulo

Angelico, Bruno
University of São Paulo

16:50-17:10
ThC07.2

Impulsive Zone Model Predictive Control for Rendezvous Hovering Phase, pp. 4934-4939.

Louembet, Christophe
LAAS-CNRS

González, Alejandro H.
CONICET-Universidad Nacional del Litoral

Arantes Gilz, Paulo Ricardo
LAAS-CNRS

17:10-17:30
ThC07.3

Ra, Won-Sang
Agency for Defense Development

Ahn, Sejoon
Agency for Defense Development

Lee Yunha
Cranfield University

Whang, Ick Ho
The Agency for Defense Development

17:30-17:50
ThC07.4

Sum-Of-Norms Model Predictive Control for Spacecraft

Maneuvering, pp. 4946-4951.

Leomanni, Mirko
University of Siena

Bianchini, Gianni
University of Siena

Garulli, Andrea
University of Siena

Giannitrapani, Antonio
University of Siena

Qartullo, Renato
University of Siena

17:50-18:10
ThC07.5

Integral ISS-Based Cascade Stabilization for Vectored-Thrust UAVs, pp. 4952-4957.

Invernizzi, Davide
Politecnico di Milano

Lovera, Marco
Politecnico di Milano

Zaccarian, Luca
LAAS-CNRS and University of Trento

18:10-18:30
ThC07.6

Spall, James C.
University of Oxford

Papachristodoulou, Antonis
University of Siena

18:30-18:50
ThC07.7

Distributed Parameter Systems I (Regular Session)

Chair: Auriol, Jean
University of Calgary

Co-Chair: Polyakov, Andrey
INRIA Lille Nord-Europe

16:30-16:50
ThC08.1

Auriol, Jean
University of Calgary

Bribiesca Argomedo, Federico
Université de Lyon, INSA Lyon, CNRS, Ampère

16:50-17:10
ThC08.2

On the Ball-Marsden-Slemrod Obstruction for Bilinear Control Systems, pp. 4971-4976.

Boussaid, Nabil
Université de Franche-Comté

Caponigro, Marco
Conservatoire National Des Arts Et Métiers

17:10-17:30
ThC08.3

Zheng, Jun
Southwest Jiaotong University

Zhu, Guchuan
Ecole Polytechnique de Montreal

17:30-17:50
ThC08.4

Direct Predictive Boundary Control of a First-Order Quasilinear Hyperbolic PDE, pp. 4984-4989.

Strecker, Timm
University of Melbourne

Aamo, Ole Morten
NTNU

17:50-18:10
ThC08.5

Polyakov, Andrey
INRIA Lille Nord-Europe

18:10-18:30
ThC08.6

Strictly Proper Control Design for the Stabilization of 2x2
ThC09
Game Theory IV (Regular Session)
Chair: Marden, Jason R.
Co-Chair: Margellos, Kostas
16:30-16:50
Robustness of Stochastic Learning Dynamics to Player Heterogeneity in Games, pp. 5002-5007.
Jaleel, Hassan
Abbas, Waseem
Shamma, Jeff S.
16:50-17:10
Utilizing Information Optimally to Influence Distributed Network Routing, pp. 5008-5013.
Ferguson, Bryce L.
Brown, Philip N.
Marden, Jason R.
17:10-17:30
A Class of Near-Optimal Local Minima for Witsenhausen’s Problem, pp. 5014-5019.
Ajorlou, Amir
Jadbabaie, Ali
17:30-17:50
Distributed GNE Seeking Over Networks in Aggregative Games with Coupled Constraints Via Forward-Backward Operator Splitting, pp. 5020-5025.
Gadjoj, Dian
Pavel, Lacra
17:50-18:10
Fele, Filiberto
Margellos, Kostas
18:10-18:30
Q-Learning with Side Information in Multi-Agent Finite Games, pp. 5032-5037.
Sylvestre, Mathieu
Pavel, Lacra
18:30-18:50
ThC09
Bou Saba, David
Bribiesca Argomedo, Federico
Di Loreto, Michael
Eberard, Damien
16:30-16:50
ThC10
Modeling, Estimation, and Control of Large-Scale Network Systems (Invited Session)
Chair: Deplano, Diego
Co-Chair: Niazi, Muhammad
16:30-16:50
Structure-Based Clustering Algorithm for Model Reduction of Large-Scale Network Systems (I), pp. 5038-5043.
Niazi, Muhammad Umar B.
Cheng, Xiaodong
Canudas de Wit, Carlos
16:50-17:10
Altafini, Claudio
17:10-17:30
Boundary Control for Output Regulation in Scale-Free Positive Networks (I), pp. 5050-5055.
Nikitin, Denis
Canudas de Wit, Carlos
Frasca, Paolo
17:30-17:50
Scale-Free Estimation of the Average State in Large-Scale Systems, pp. 5056-5061.
Niazi, Muhammad Umar B.
Deplano, Diego
Canudas de Wit, Carlos
Kibangou, Alain
17:50-18:10
Yu, Lantin
Cheng, Xiaodong
Scherpen, Jacquelen M.A.
18:10-18:30
Gao, Shuang
Caines, Peter E.
18:30-18:50
ThC11
Estimation III (Regular Session)
Chair: Meurer, Thomas
Co-Chair: Zorzi, Mattia
16:30-16:50
Impulsive Observer Design for a Class of Continuous Biological Reactors, pp. 5076-5081.
Feketa, Petro
Schaum, Alexander
Jerono, Pascal
Meurer, Thomas
18:30-18:50
<table>
<thead>
<tr>
<th>Session Time</th>
<th>ThC11.2</th>
<th>Strong Consistency of the Distributed Stochastic Gradient Algorithm, pp. 5082-5087.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:50-17:10</td>
<td></td>
<td>Gan, Die, Chinese Academy of Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liu, Zhixin, Academy of Mathematics and Systems Science, Chinese Academy of Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhu, Bin, University of Padova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferrante, Augusto, University of Padova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karlsson, Johan, KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zorzi, Mattia, University of Padova</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC11.4</td>
<td>Variable Exponential Forgetting for Estimation of the Statistics of the Normal-Wishart Distribution with a Constant Precision, pp. 5094-5100.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dokoupil, Jakub, CEITEC, Brno University of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vlacavek, Pavel, Brno University of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Merling, Nicolas, ONERA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cantou, Thibault, ONERA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dahia, Karim, ONERA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wan, Wenbin, University of Illinois, Urbana Champaign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kim, Hunmin, University of Illinois, Urbana Champaign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hovakimyan, Naira, University of Illinois, Urbana Champaign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voulgaris, Petros G., University of Illinois, Urbana Champaign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swikir, Abdalla, Technical University of Munich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zaman, Majid, University of Colorado Boulder</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC12.3</td>
<td>No Switching Policy Is Optimal for a Linear System with a Bottleneck Entrance, pp. 5132-5137.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sadeghi, Mahdiar, Northeastern University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Al-Radhawi, Muhammad, Massachutes Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Margaliot, Michael, Tel Aviv University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sontag, Eduardo, Northeastern University</td>
</tr>
<tr>
<td>17:50-18:10</td>
<td>ThC12.5</td>
<td>Multi-Dimensional Continuous Type Population Potential Games, pp. 5138-5143.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calderone, Dan, University of Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratliff, Lillian J., University of Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meira-Goese, Romulo, University of Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marchand, Herve, INRIA Rennes - Bretagne Atlantique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lafortune, Stephane, University of Michigan</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>ThC13</td>
<td>Joint Estimation of OD Demands and Cost Functions in Transportation Networks from Data, pp. 5113-5118.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wollenstein-Betech, Salomon, Boston University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sun, Chuangchuang, Ohio State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhang, Jing, Mitsubishi Electric Research Laboratories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paschalidis, Ioannis Ch., Boston University</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC13.1</td>
<td>A Two-Stage Market Mechanism for Electricity with Renewable Generation, pp. 5150-5155.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dahnlin, Nathan, University of Southern California</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jain, Rahul, University of Southern California</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>ThC13.2</td>
<td>An Optimal Defense Strategy against Data Integrity Attacks in Smart Grids, pp. 5156-5161.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salehghaffari, Hossein, NYU, Tandon School of Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Khorrani, Farshad, NYU, Tandon School of Engineering</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC13.3</td>
<td>Privacy of Real-Time Pricing in Smart Grid, pp. 5162-5167.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghododious Boroujeni, Mahrokh, Sharif University of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fay, Dominik, KTH Royal Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dimitrakis, Christos, Chalmers University of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kamgarpour, Maryam, ETH Zurich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perez, Filipe, UNIFEI, CentraleSupelec</td>
</tr>
</tbody>
</table>

123
Controller Design Approach, pp. 5212-5216.

Li, Haifang
Heilongjiang University
Wang, Xin
Heilongjiang University
Xue, Yu
Heilongjiang University

18:10-18:30
ThC14.6
Maintaining Ferment, pp. 5217-5222.

Goyal, Mohak
Indian Institute of Technology, Bombay
Chatterjee, Debasis
Indian Institute of Technology, Bombay
Karamchandani, Nikhil
Indian Institute of Technology, Bombay
Manjunath, D
INDIAN INSTITUTE OF TECHNOLOGY Bombay, India

ThC15
Optimal Control III (Regular Session)

Chair: Anderson, James
California Institute of Technology
Co-Chair: Leve, Frederick
AFOSR

16:30-16:50
ThC15.1

Stickan, Benjamin
Institute for Solar Energy Systems
Freiburg
Rutquist, Per
Department of Microsystems Engineering, IMTEK
Geyer, Tobias
ABB Corporate Research
Diehl, Moritz
University of Freiburg

16:50-17:10
ThC15.2

Sutherland, Richard
University of Michigan
Kolmanovsky, Ilya V.
University of Michigan
Girard, Anouck
University of Michigan, Ann Arbor
Leve, Frederick
AFOSR
Petersen, Christopher
Air Force Research Laboratory

17:10-17:30
ThC15.3
Optimal Control for Continuous-Time Nonlinear Systems Based on a Linear-Like Policy Iteration, pp. 5238-5243.

TAHIROVIC, Adnan
University of Sarajevo
Astolfi, Alessandro
Imperial College & University of Rome

17:30-17:50
ThC15.4
Quasi-Stochastic Approximation and Off-Policy Reinforcement Learning, pp. 5244-5251.

Bernstein, Andrey
National Renewable Energy Lab (NREL)
Chen, Yue
National Renewable Energy Laboratory
Colombino, Marcello
McGill University
Dall’Anese, Emiliano
University of Colorado, Boulder
Mehta, Prashant G.
University of Illinois, Urbana Champaign
Meyn, Sean P.
University of Florida

17:50-18:10
ThC15.5
Distributed Optimization of Nonlinear Multi-Agent Systems
A Small-Gain Approach, pp. 5252-5257.
Liu, Tengfei
Northeastern University
Qin, Zhengyan
Northeastern University
Hong, Yiguang
Chinese Academy of Sciences
Jiang, Zhong-Ping
New York University

System Level Synthesis with State and Input Constraints, pp. 5258-5263.
Chen, Yuxiao
California Institute of Technology
Anderson, James
California Institute of Technology

ThC16 Rhodes AB
Numerical Methods for Real-Time Model Predictive Control II
(Invited Session)

Chair: McInerney, Ian
Imperial College London
Co-Chair: Kerrigan, Eric C.
Imperial College London
Organizer: McInerney, Ian
Imperial College London
Organizer: Kerrigan, Eric C.
Imperial College London
Organizer: Nie, Yuanbo
Imperial College London

A Parallel Decomposition Scheme for Solving Long-Horizon Optimal Control Problems (I), pp. 5264-5271.
Shin, Sungho
University of Wisconsin-Madison
Faulwasser, Timm
Karlsruhe Institute of Technology
Zanon, Mario
IMT Institute for Advanced Studies Lucca
Zavala, Victor M.
University of Wisconsin-Madison

Nonlinear Model Predictive Control for Distributed Motion Planning in Road Intersections Using PANOC (I), pp. 5272-5278.
Katrinioik, Alexander
Ford Research & Innovation Center
Sopasakis, Pantelis
Katholieke Universiteit Leuven
Schuurmans, Mathijs
Katholieke Universiteit Leuven
Patrinos, Panagiotis
Katholieke Universiteit Leuven

Burk, Daniel
Friedrich-Alexander-University Erlangen-Nuremberg
Völz, Andreas
Friedrich-Alexander-University Erlangen-Nuremberg
Graichen, Knut
University Erlangen-Nürnberg (FAU)

Real-Time Model Predictive Control Based on Prediction-Correction Algorithms (I), pp. 5285-5291.
Paternain, Santiago
University of Pennsylvania
Morari, Manfred
University of Pennsylvania
Ribeiro, Alejandro
University of Pennsylvania

Nie, Yuanbo
Imperial College London
Kerrigan, Eric C.
Imperial College London

The Advanced Step Real Time Iteration for NMPC, pp. 5298-5305.
Nurkanović, Amin
Siemens AG
Zanelli, Andrea
University of Freiburg
Albrecht, Sebastian
Siemens AG
Diehl, Moritz
University of Freiburg

Transfer Planning for Temporal Logic Tasks, pp. 5306-5311.
Luo, Xusheng
Duke University
Zavlanos, Michael M.
Duke University

Average-Based Robustness for Continuous-Time Signal Temporal Logic, pp. 5312-5317.
Belta, Calin
Boston University
Vasile, Cristian Ioan
Massachusetts Institute of Technology

Opportunistic Synthesis in Reactive Games under Information Asymmetry, pp. 5323-5329.
Kulkarni, Abhishek
Worcester Polytechnic Institute
Fu, Jie
Worcester Polytechnic Institute

Topological Approximate Dynamic Programming under Temporal Logic Constraints, pp. 5330-5337.
Lee, Insup
University of Pennsylvania

Hasanbeig, Hosein
University of Oxford
Kantaros, Yiannis
University of Pennsylvania
Abate, Alessandro
University of Oxford
Kroening, Daniel
University of Oxford
Pappas, George J.
University of Pennsylvania

Security in Cyber-Physical Systems II (Invited Session)

Chair: Johansson, Karl H.
KTH Royal Institute of Technology
Co-Chair: Mo, Yilin
Tsinghua University
Organizer: Ren, Xiaojing
Shanghai University
Organizer: Mo, Yilin
Tsinghua University
Organizer: Sinopoli, Bruno
Washington University in St Louis
Organizer: Johansson, Karl H. KTH Royal Institute of Technology

16:30-16:50 ThC18.1

Secure Distributed Filtering for Unstable Dynamics under Compromised Observations (I), pp. 5344-5349.
He, Xingkang KTH Royal Institute of Technology
Ren, Xiaoqiang KTH Royal Institute of Technology
Sandberg, Henrik KTH Royal Institute of Technology
Johansson, Karl H. KTH Royal Institute of Technology

16:50-17:10 ThC18.2

Wang, Yu Duke University
Pajic, Miroslav Duke University

17:10-17:30 ThC18.3

Filtering Approaches for Dealing with Noise in Anomaly Detection (I), pp. 5356-5361.
Hashemi, Navid University of Texas, Dallas
Verdugo, Eduardo Centro De Investigación Científica Y De Educación Superior De En
Peña, Jonatán Centro De Investigación Científica Y De Educación Superior De En
Ruths, Justin University of Texas, Dallas

17:30-17:50 ThC18.4

Study on Realizable Generalized Hold Functions As a Countermeasure against Zero Dynamics Attack (I), pp. 5362-5367.
Ha, Jongsoo Seoul National University
Shim, Hyungbo Seoul National University

17:50-18:10 ThC18.5

Mao, Yanwen University of California, Los Angeles
Mitra, Aritra Purdue University
Sundaram, Shreyas Purdue University
Tabuada, Paulo University of California, Los Angeles

18:10-18:30 ThC18.6

Protecting Assets with Heterogeneous Valuations under Behavioral Probability Weighting (I), pp. 5374-5379.
Abdallah, Mustafa Purdue University
Naghizadeh, Parinaz Purdue University
Cason, Timothy Purdue University
Bagchi, Saurabh Purdue University
Sundaram, Shreyas Purdue University

16:30-16:50 ThC19.1

Finite-Time Stabilization and Robust Control of Stochastic Nonlinear System Based on Hamiltonian Realization, pp. 5380-5385.
Wang, Min Zhengzhou University
Liu, Yanhong Zhengzhou University

16:50-17:10 ThC19.2

Linear Noisy Networks with Stochastic Components, pp. 5386-5391.
Sevuktekin, Noyan University of Illinois, Urbana Champaign
Raginsky, Maxim University of Illinois, Urbana Champaign
Singer, Andrew University of Illinois, Urbana Champaign

17:10-17:30 ThC19.3

M. Jasour, Ashkan Massachusetts Institute of Technology
Williams, Brian Massachusetts Institute of Technology

17:30-17:50 ThC19.4

Hosoe, Yohei Kyoto University
Peaucelle, Dimitri LAAS-CNRS, Université de Toulouse

17:50-18:10 ThC19.5

Noroozi, Navid Otto Von Guericke Universitat Magdeburg
Jackson, Roxanne R. University of Passau
Quevedo, Daniel E. Paderborn University
Wirth, Fabian University of Passau
Findeisen, Rolf Otto Von Guericke Universitat Magdeburg

18:10-18:30 ThC19.6

A Modified Technique for Spectral Factorization of Infinite-Dimensional Systems Using Subspace Techniques, pp. 5412-5419.
Lao, Yejun University of Michigan
Scruggs, Jeff University of Michigan

16:30-16:50 ThC20.1

Robust Dynamic Average Consensus with Prescribed Performance, pp. 5420-5425.
Stamoulis, Charalampos National Tech. Univ. of Athens
Bechlioulis, Charalampos P. National Tech. Univ. of Athens
Kyriakopoulou, Kostas J. National Tech. Univ. of Athens

16:50-17:10 ThC20.2

Adaptive Output Consensus Design in Clustered Networks of Heterogeneous Linear Multi-Agent Systems, pp. 5426-5431.
Pham, Van Thiern University of Reims Champagne-Ardenne
Mesai, Nadhir Université de Reims Champagne-Ardenne
Controllability in Networks
On the Computation of a Lower Bound on Strong Structural
Systems with Minimum Communication
Asynchronous Consensus of Continuous-Time Multiagent
Walks
Strongly Connected Distributed Systems
Network Realizable Controllers with an Application to
Leaders in Discrete-Time Systems
Resilient Leader-Follower Consensus of Time-Varying
Adversary Attacks and Asynchronous Events
Resilient Exponential Consensus with Time-Varying
Impacts of Average Degrees and Average Distances
Structural Robustness to Noise in Consensus Networks:
Reverse Average Dwell-Times for Networked Control
Regret and Fit, pp. 5486-5493.
Constrained Online Learning in Networks with Sublinear
Regret and Fit
ThC22 (Invited Session)
Theoretical Foundations for the Representation and
Identification of Dynamic Networks II
State Estimation in Water Distribution Networks through a
New Successive Linear Approximation, pp. 5474-5479.
Wang, Shen University of Texas, San Antonio
Taha, Ahmad University of Texas, San Antonio
Sela, Lina University of Texas, Austin
Gatsis, Nikolaos University of Texas, San Antonio
Giacomoni, Marco University of Texas, San Antonio

Network Realizable Controllers with an Application to
Strongly Connected Distributed Systems, pp. 5450-5455.
Kucuksayacigil, Gulnihar Iowa State University
Naghaei, Mohammad Clemson University
Elia, Nicola University of Minnesota

ThC21

Networked Control Systems III (Regular Session)
Chair: Taha, Ahmad University of Texas, San Antonio
Co-Chair: Kan, Zhen University of Iowa

Characterizing Herdability of Signed Networks Via Graph
Walks, pp. 5456-5461.
She, Baike University of Iowa
Cai, Mingyu University of Iowa
Kan, Zhen University of Iowa

Asynchronous Consensus of Continuous-Time Multiagent
Systems with Minimum Communication, pp. 5462-5467.
Sawant, Vishal Indian Institute of Technology, Bombay
Chakraborty, Debraj Indian Institute of Technology, Bombay
Pal, Debasattam Indian Institute of Technology, Bombay

On the Computation of a Lower Bound on Strong Structural
Controllability in Networks, pp. 5468-5473.
Shabbir, Mudassir Information Technology University
Abbas, Waseem Vanderbilt University
Yazicioglu, Yasin University of Minnesota

17:30-17:50 ThC21.4

17:50-18:10 ThC20.5

18:10-18:30 ThC20.6

17:30-17:50 ThC20.4

17:30-17:50 ThC20.3

17:10-17:30 ThC21.3

17:10-17:30 ThC21.2

16:50-17:10 ThC22.1

16:50-17:10 ThC22.2

17:10-17:30 ThC22.3

17:10-17:30 ThC21.1

17:50-18:10 ThC21.5

18:10-18:30 ThC21.6

127
ThC23 Machine Learning in Complex Networks I (Invited Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-16:50</td>
<td>ThC23.1</td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>ThC23.2</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>ThC23.3</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC23.4</td>
</tr>
</tbody>
</table>

Chair: Basar, Tamer
- University of Illinois, Urbana-Champaign

Co-Chair: Liu, Ji
- Stony Brook University

Organizer: Basar, Tamer
- University of Illinois, Urbana-Champaign

Organizer: Liu, Ji
- Stony Brook University

Organizer: Shi, Wei
- Arizona State University

Organizer: Zhang, Kaiqing
- University of Illinois, Urbana-Champaign

ThC24 Recent Advances in Iterative Learning Control and Repetitive Learning Control: From Theory to Applications (Invited Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-16:50</td>
<td>ThC24.1</td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>ThC24.2</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>ThC24.3</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>ThC24.4</td>
</tr>
</tbody>
</table>

Chair: Tan, Ying
- University of Melbourne

Co-Chair: Li, Yanan
- University of Sussex

Organizer: Sebastian, Gijo
- University of Melbourne

Organizer: Tan, Ying
- University of Melbourne

Organizer: Oomen, Tom
- Eindhoven University of Technology

Organizer: Chu, Bing
- University of Southampton

Organizer: Freeman, Christopher T.
- University of Southampton

Organizer: Barton, Kira
- University of Michigan, Ann Arbor

ThC22 Topology Identification of Heterogeneous Networks of Linear Systems (I), pp. 5513-5518.
- van Waarde, Henk J.
 - University of Groningen
- Tesi, Pietro
 - University of Firenze
- Camlibel, M. Kanat
 - University of Groningen

ThC23 Generalized Sensing and Actuation Schemes for Local Module Identification in Dynamic Networks (I), pp. 5519-5524.
- Ramaswamy, Karthik R.
 - Eindhoven University of Technology
- Van den Hof, Paul M.J.
 - Eindhoven University of Technology
- Dankers, Ame
 - University of Calgary

ThC24 Designing Local Inputs to Identify Link Failures in a Diffusive Network: A Graph Perspective (I), pp. 5525-5530.
- Xue, Mengran
 - Washington State University

ThC25 Policy Gradient Using Weak Derivatives for Reinforcement Learning (I), pp. 5531-5537.
- Bhatt, Sujay
 - Cornell University
- Koppel, Alec
 - U.S. Army Research Laboratory
- Krishnamurthy, Vikram
 - Cornell University

ThC26 Distributed Stochastic Gradient Method for Non-Convex Problems with Applications in Supervised Learning (I), pp. 5538-5543.
- George, Jemin
 - U.S. Army Research Laboratory
- Yang, Tao
 - Northeastern University
- Bai, He
 - Oklahoma State University
- Gurram, Prudhvi
 - Booz Allen Hamilton

ThC27 Distributed Learning in Network Games: A Dual Averaging Approach (I), pp. 5544-5549.
- Talebi, Shahriar
 - University of Washington
- Alemzadeh, Siavash
 - University of Washington
- Ratliff, Lillian J.
 - University of Washington
- Mesbahi, Mehran
 - University of Washington

ThC28 Stochastic Bregman Parallel Direction Method of Multipliers for Distributed Optimization, pp. 5550-5555.
- Yu, Yue
 - University of Washington
- Aickmese, Behcet
 - University of Washington

ThC29 Reinforcement Learning for Decentralized Stochastic Control (I), pp. 5556-5561.
- Yongacoglu, Bora
 - Queen's University
- Arslan, Gurdal
 - University of Hawaii, Manoa
- Yuksel, Serdar
 - Queen's University

ThC30 A Communication-Efficient Multi-Agent Actor-Critic Algorithm for Distributed Reinforcement Learning (I), pp. 5562-5567.
- Lin, Yixuan
 - Stony Brook University
- Zhang, Kaicong
 - University of Illinois, Urbana-Champaign
- Yang, Zhuoran
 - Princeton University
- Wang, Zhaoan
 - Northwestern University
- Basar, Tamer
 - University of Illinois, Urbana-Champaign
- Sandhu, Romeil
 - Stony Brook University
- Liu, Ji
 - Stony Brook University
Iterative Learning Control of the Displacements of a Cantilever Beam (I), pp. 5593-5598.

Patan, Maciej University of Zielona Gora
Klimkowicz, Kamil University of Zielona Gora
Maniarski, Robert University of Zielona Góra
Patan, Krzysztof University of Zielona Góra
Rogers, Eric University of Southampton

18:10-18:30 ThC24.6
Frequency Domain Design of a Robust Iterative Learning Control Via Convex Optimization Techniques (I), pp. 5599-5604.

Mandra, Slawomir Nicolaus Copernicus University
Galkowski, Krzysztof University of Zielona Góra
Aschemann, Harald University of Rostock
Rauh, Andreas University of Rostock

ThC25
Large-Scale Systems (Regular Session)

Chair: Görges, Daniel University of Kaiserslautern
Co-Chair: Mironchenko, Andrii University of Passau

16:30-16:50 ThC25.1

Mao, Yanbing Binghamton University-SUNY
Jafarnejadsani, Hamidreza University of Illinois, Urbana Champaign
Zhao, Pan University of Illinois, Urbana Champaign
Akyol, Emrah SUNY Binghamton
Hovakimyan, Naira University of Illinois, Urbana Champaign

16:50-17:10 ThC25.2

Kang, Rongrong Fudan University
Li, Cong Fudan University
Li, Xiang Fudan University

17:10-17:30 ThC25.3

Mironchenko, Andrii University of Passau

17:30-17:50 ThC25.4
A Distributed Approach for the Detection of Covert Attacks in Interconnected Systems with Stochastic Uncertainties, pp. 5623-5628.

Barboni, Angelo Imperial College London
Gallo, Alexander Imperial College London
Boem, Francesca University College London
Parisini, Thomas Imperial College & University of Trieste

17:50-18:10 ThC25.5
Robust Finite Frequency H∞ Model Reduction for Uncertain

2D Continuous Systems, pp. 5629-5634.

El-Amrani, Abderrahim University of Sidi Mohammed Ben Abdellah
Boukili, Bensalem Fez
El Hajjaji, Ahmed University of Picardie-Jules Verne
Hmamed, Abdelaziz Faculty of Science Dhar El Mahraz
Boumhidi, Ismail USMBA
Technical Program for Friday December 13, 2019

FrP1

Feedback and Uncertainty: Some Basic Problems and Theorems
(Plenary Session)

Chair: Bitmead, Robert R.
University of California San Diego

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 08:30-09:30| Feedback and Uncertainty: Some Basic Problems and Theorems*
Guo, Lei
Academy of Mathematics and Systems Science, Chinese Academy of Sciences |

FrA01

Nonlinear Modeling and Estimation in Biomedical Systems
(Invited Session)

Chair: Medvedev, Alexander V.
Uppsala University
Co-Chair: Knorn, Steffi
Otto-Von-Guericke University Magdeburg
Organizer: Medvedev, Alexander V.
Uppsala University
Organizer: Knorn, Steffi
Otto-Von-Guericke University Magdeburg

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 10:00-10:20| Identification of Continuous Volterra Models with Explicit Time Delay through Series of Laguerre Functions (I), pp. 5641-5646.
Bro, Viktor
Uppsala University
Medvedev, Alexander V.
Uppsala University |
Kask, Nathalie
Luleå University of Technology
Budgett, David M
Auckland Bioengineering Institute, University of Auckland
Kruger, Jennifer A
Auckland Bioengineering Institute, University of Auckland
Nielsen, Poul M F
Department of Engineering Science, University of Auckland
Varagnolo, Damiano
NTNU - Norwegian University of Science and Technology
Knorn, Steffi
Otto-Von-Guericke University Magdeburg |
| 10:40-11:00| Meal Estimation from Continuous Glucose Monitor Data Using Kalman Filtering and Hypothesis Testing (I), pp. 5654-5661.
Staal, Odd Martin
NTNU, Norwegian University of Science and Technology
Sælid, Steinar
Prediktor Medical AS
Fougner, Anders Lyngvi
Norwegian University of Science and Technology (NTNU)
Stavdahl, Øyvind
NTNU, Norwegian University of Science and Technology |
| 11:00-11:20| Optimal Control Modulation of HIV Reservoir Formation Rate by Antigen Infusion (I), pp. 5662-5667.
Jagarapu, Aditya
University of Delaware
Piovoso, Michael J.
University of Delaware
Zurakowski, Ryan
University of Delaware |

FrA02

Linear Systems I (Regular Session)

Chair: Niemann, Henrik
Technical University of Denmark
Co-Chair: Dilip, Sanand
Indian Institute of Technology, Kharagpur

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 10:00-10:20| Towards Data-Driven LPV Controller Synthesis Based on Frequency Response Functions, pp. 5680-5685.
Bloemers, Tom
Eindhoven University of Technology
Tóth, Roland
Eindhoven University of Technology
Oomen, Tom
Eindhoven University of Technology |
Baggio, Giacomo
University of California, Riverside
Zampieri, Sandro
University of Padova
Scherer, Carsten W.
University of Stuttgart |
| 10:40-11:00| A Controller Architecture with Anti-Windup, pp. 5692-5697.
Niemann, Henrik
Technical University of Denmark |
| 11:00-11:20| The Controllability Gramian, the Hadamard Product and the Optimal Actuator and Sensor Placement Problem, pp. 5698-5703.
Dilip, Sanand
Indian Institute of Technology, Kharagpur |
Eising, Jaap
University of Groningen
Camlibel, M. Kanat
University of Groningen |
| 11:40-12:00| Fractional-Order Memory Reset Control for Integer-Order LTI Systems, pp. 5710-5715.
Weise, Christoph
TU Ilmenau
Wulff, Kai
TU Ilmenau
Reger, Johann
TU Ilmenau |
FrA03

Autonomous Vehicles (Regular Session)

Chair: Liu, Lantao
Indiana University
Co-Chair: Ferrari, Riccardo M.G.
Delft University of Technology

10:00-10:20
FrA03.1
Multi-Objective and Model-Predictive Tree Search for Spatiotemporal Informative Planning, pp. 5716-5722.
Chen, Weizhe
Indiana University Bloomington
Liu, Lantao
Indiana University

10:20-10:40
FrA03.2
Decentralized Radial Segregation in Heterogeneous Swarms of Robots, pp. 5723-5728.
Bernardes Ferreira Filho, Edson
Universidade Federal de Minas Gerais
Pimenta, Luciano
Universidade Federal de Minas Gerais

10:40-11:00
FrA03.3
Bopardikar, Shaunak D.
Michigan State University
Srivastava, Vaibhav
Michigan State University

11:00-11:20
FrA03.4
An Observer-Based Longitudinal Control of Car-Like Vehicles Platoon Navigating in an Urban Environment, pp. 5735-5741.
Khalifa, Ahmed
Faculty of Electronics Engineering, Menoufa University
Kermorgant, Olivier
École Centrale Nantes
Dominguez, Salvador
École Centrale de Nantes
Martinet, Philippe
IRCCyN

11:20-11:40
FrA03.5
Keijzer, Twan
Delft University of Technology
Ferrari, Riccardo M.G.
Delft University of Technology

11:40-12:00
FrA03.6
A Predictive Vector-Field Based Lane-Changing Controller, pp. 5748-5753.
Huang, Lixing
University of Michigan
Panagou, Dimitra
University of Michigan, Ann Arbor

FrA04

Modern Computational and Algorithmic Challenges on Switched Systems (Invited Session)

Chair: Mason, Paolo
CNRS, Laboratoire Des Signaux Et Systèmes, Supélec
Co-Chair: Jungers, Raphaël M.
University of Louvain
Organizer: Girard, Antoine
CNRS
Organizer: Jungers, Raphaël M.
University of Louvain
Organizer: Wang, Zheming
University of Louvain

10:00-10:20
FrA04.1
Scabin Vicinansa, Guilherme
University of Illinois, Urbana

10:20-10:40
FrA04.2
Dissipativeness and Dissipatization of Discrete-Time Switched Linear Systems (I), pp. 5760-5765.
Jungers, Marc
CNRS - Université de Lorraine
Ferrante, Francesco
GIPSA-Lab and Université Grenoble Alpes
Loheac, Jerome
CNRS, Université de Lorraine

10:40-11:00
FrA04.3
Zacchia Lun, Yuriy
IMT School for Advanced Studies Lucca
D'Innocenzo, Alessandro
University of L'Aquila

11:00-11:20
FrA04.4
Extended Projected Dynamical Systems with Applications to Hybrid Integrator-Gain Systems (I), pp. 5773-5778.
Sharif, Bardia
Eindhoven University of Technology
Heertjes, Marcel
Eindhoven University of Technology
Heemels, W.P.M.H.
Eindhoven University of Technology

11:20-11:40
FrA04.5
Fault Detectability Analysis of Switched Affine Systems with Linear Temporal Logic Constraints (I), pp. 5779-5786.
Yang, Liren
University of Michigan
Ozay, Necmiye
University of Michigan

11:40-12:00
FrA04.6
Girard, Antoine
CNRS
Mason, Paolo
CNRS, Laboratoire Des Signaux Et Systèmes, Supélec

FrA05

Robust Control I (Regular Session)

Chair: Ossmann, Daniel
German Aerospace Center (DLR)
Co-Chair: Yagoubi, Mohamed
IMT Atlantique

10:00-10:20
FrA05.1
Arthur, Khalid M.
University of New Hampshire
Yoon, Se Young (Pablo)
University of New Hampshire

10:20-10:40
FrA05.2
Martinez, Contreras, Edgar Alejandro
Tecnologico Nacional de Mexico/ Instituto Tecnologico de La Laguna
Rios, Héctor
CONACYT-Tecnologico Nacional de Mexico/ Instituto Tecnologico de La Laguna
Mera, Manuel
UPIBI-IPN
González-Sierra, Jaime
Instituto Tecnológico de La Laguna
10:40-11:00 FrA05.3
Robustness Analysis of Continuous Periodic Systems Using Integral Quadratic Constraints, pp. 5805-5810.
Ossmann, Daniel Munich University of Applied Sciences
Pfifer, Harald University of Nottingham
11:00-11:20 FrA05.4
Projection/Reflection-Based Techniques for Multi-Objective Control Synthesis under Information Structure Constraints, pp. 5811-5818.
Yagoubi, Mohamed CNRS-UMR 6004-CD0962
11:20-11:40 FrA05.5
Revisit of LQG Control--A New Paradigm with Recovered Robustness, pp. 5819-5825.
Chen, Xiang University of Windsor
Zhou, Kemin Shandong University of Science and Technology
Tan, Ying University of Melbourne
10:40-11:00 FrA06.1
Yang, Haibo Iowa State University
Zhang, Xin Iowa State University
Fang, Minghong Iowa State University
Liu, Jia Iowa State University
10:20-10:40 FrA06.2
Teel, Andrew R. University of California, Santa Barbara
Poveda, Jorge I. University of Colorado, Boulder
Le, Justin University of California, Santa Barbara
10:40-11:00 FrA06.3
Distributed Algorithm for Economic Dispatch Problem with Separable Losses, pp. 5844-5849.
Lee, Seungjoon Seoul National University
Shim, Hyungbo Seoul National University
11:00-11:20 FrA06.4
Seidman, Jacob H. University of Pennsylvania
Fazlyab, Mahyar University of Pennsylvania
11:20-11:40 FrA06.5
Han, Shuo University of Illinois, Chicago
11:40-12:00 FrA06.6
Distributed Alternating Direction Method of Multipliers for Linearly-Constrained Optimization Over a Network, pp. 5862-5867.
Carli, Raffaele Politecnico di Bari
Dotoli, Mariagrazia Politecnico di Bari
10:20-10:40 FrA07.1
Robust Multivariable Sliding Mode Attitude Control for Enhanced Helicopter Handling Qualities, pp. 5868-5873.
Haible, Omkar Technical University of Munich
Hajek, Manfred Technical University of Munich
10:40-11:00 FrA07.3
Automatic Control of Convertible Fixed-Wing Drones with Vectorized Thrust, pp. 5880-5887.
anglade, andre I3S, Université Cote D Azur, CNRS, Sophia Antipolis, France,
KAI, Jean-Marie I3S CNRS Université Côte D’Azur
Hamel, Tarek Université de Nice Sophia Antipolis
Samson, Claude I3S-CNRS
11:00-11:20 FrA07.4
Saraiva da Silva, Ramiro Federal University of Santa Catarina
De Lelis, Marcelo Federal University of Santa Catarina
Bruhns Bastos, Matheus Federal University of Santa Catarina
Trofino, Alexandre Federal University of Santa Catarina
Continuous Sliding-Mode Control for a Class of Underactuated Systems, pp. 6001-6006.

Ovalle, Luis
TechNM/Instituto Tecnológico de La Laguna
Steinberger, Martin
Graz University of Technology
Horn, Martin
Graz University of Technology
Ferrara, Antonella
University of Pavia

Homogeneous Filtering and Differentiation Based on Sliding Modes, pp. 6013-6018.

Levant, Arie
Tel-Aviv University

Xie, Junfei
San Diego State University
Garcia Carrillo, Luis Rodolfo
Texas A&M University - Corpus Christi
Jin, Lei
Texas A&M University-Corpus Christi
Hespanha, Joao P.
University of California, Santa Barbara

Joseph, Ajin
Indian Institute of Science
Bhatnagar, Shalabh
Indian Institute of Science

Optimization Based Input Preview Filtering for Dynamical Systems, pp. 6032-6037.

Lang, Adair
University of Melbourne
Cantoni, Michael
University of Melbourne

Andrien, Alex Rudolf Petrus
Eindhoven University of Technology
Antunes, Duarte
Eindhoven University of Technology

Tracking of Multiple Targets across Distributed Platforms with FOV Constraints, pp. 6044-6049.

Allik, Bethany
US Army Research Laboratory

Distributed Tracking Via Simultaneous Perturbation Stochastic Approximation-Based Consensus Algorithm, pp. 6050-6055.

Efroeeva, Victoria
Saint Petersburg State University
Granchin, Oleg
Saint Petersburg State University
Amelina, Natalia
Saint Petersburg State University
Ivanskii, Yury
Saint Petersburg State University
Jiang, Yuming
Norwegian University of Science and Technology

System Cones and Phase Bounded Systems (Invited Session)

Chair: Qiu, Li
Hong Kong University of Science and Technology
Co-Chair: Chen, Wei
Hong Kong University of Science and Technology
Organizer: Chen, Wei
Peking University
Organizer: Qiu, Li
Hong Kong University of Science and Technology

Phase Analysis of MIMO LTI Systems (I), pp. 6062-6067.

Chen, Wei
Peking University
Wang, Dan
Hong Kong University of Science and Technology
Khong, Sei Zhen
University of Hong Kong
Qiu, Li
Hong Kong University of Science and Technology

Pates, Richard
Lund University
Bergeling, Carolina
Lund University
Rantzer, Anders
Lund University

Karpelevich Theorem and the Positive Realization of Matrices, pp. 6074-6079.

Cacace, Filippo
Università Campus Biomedico di Roma
Germani, Alfredo
University of L'Aquila
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:20</td>
<td>FrA15.4</td>
<td>Adaptive Dynamic Programming Using Lyapunov Function Constrainst</td>
<td>Göhr, Thomas, Osinenko, Pavel, Streif, Stefan (Technische Universität Chemnitz)</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>FrA15.5</td>
<td>Optimal Motion of a Scallop: Some Case Studies</td>
<td>Zoppello, Marta, Magistro, Rosario (Università Ca' Foscari Venezia)</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>FrA15.6</td>
<td>Solution for the Continuous-Time Infinite-Horizon Linear Quadratic Regulator Subject to Scalar State Constraints</td>
<td>van Keulen, Thijs (Eindhoven University of Technology)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>FrA16</td>
<td>Real-Time Optimization Methods for Power Systems (Invited Session)</td>
<td>Chair: Colombino, Marcello, Co-Chair: Scherpen, Jacquelien M.A., Organizer: Colombino, Marcello</td>
</tr>
<tr>
<td>10:00-10:20</td>
<td>FrA16.1</td>
<td>Towards Robustness Guarantees for Feedback-Based Optimization (I)</td>
<td>Colombino, Marcello (McGill University), Simpson-Porco, John W., Bernstein, Andrey (NREL)</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>FrA16.2</td>
<td>Distributed Control of DC Microgrids Using Primal-Dual Dynamics (I)</td>
<td>Kosaraju, Krishna Chaitanya, Cucuzzella, Michele, Scherpen, Jacquelien M.A. (University of Groningen)</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>FrA16.3</td>
<td>On the Convergence of the Inexact Running Krasnosel'ski-Mann Method</td>
<td>Dall’Anese, Emiliano, Simonetto, Andrea (University of Colorado, Boulder, IBM Research Ireland)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>FrA16.4</td>
<td>Sufficient Conditions for Exact Semidefinite Relaxation of Optimal Power Flow in Unbalanced Multiphase Radial Networks</td>
<td>Zhou, Fengyu, Chen, Yue, Low, Steven (California Institute of Technology)</td>
</tr>
</tbody>
</table>

- Tatarenko, Tatiana (Technical University of Darmstadt)
- Zimmermann, Jan (Technical University of Darmstadt)
- Willert, Volker (Technical University of Darmstadt)
- Adamy, Jürgen (Technical University of Darmstadt)

11:40-12:00 FrA16.6 Distributed Model Predictive Control for Autonomous Droop-Controlled Inverter-Based Microgrids, pp. 6242-6248.

- Anderson, Sean (University of California, Berkeley)
- Hidalgo-Gonzalez, Patricia (University of California, Berkeley)
- Dobbe, Roel (University of California, Berkeley)
- Tomlin, Claire J. (University of California, Berkeley)

FrA17 Rhodes AB

Formal Methods in Control (Invited Session)

- Chair: Reisigg, Gunther (Bundeswehr University Munich)
- Co-Chair: Kong, Zhaodan (University of California, Davis)
- Organizer: Reisigg, Gunther (Bundeswehr University Munich)
- Organizer: Ehlers, Ruediger (Clausthal University of Technology)

10:00-10:20 FrA17.1 Computing Controlled Invariant Sets in Two Moves (I), pp. 6249-6254.

- Anevavis, Tzanis (University of California, Los Angeles)
- Tabuada, Pablo (University of California, Los Angeles)

- Saoud, Adnane (CentraleSupélec, CNRS, CentraleSupélec, Université Paris-Sud, Université Paris-Sa)
- Girard, Antoine (CNRS)

- Bai, Yunjun (SKLCS, Institute of Software, Chinese Academy of Sciences, Univ)
- Mallik, Kaushik (MPI-SWS (Max Planck Institute for Software Systems))
- Schmuck, Anne-Kathrin (MPI-SWS)
- Zufferey, Damien (MPI-SWS)
- Majumdar, Rupak (University of California, Los Angeles)

11:00-11:20 FrA17.4 Semantic Inference for Cyber-Physical Systems with Signal Temporal Logic, pp. 6269-6274.

- Chen, Gang (University of California, Davis)
- Liu, Mei (University of Hong Kong)
- Kong, Zhaodan (University of California, Davis)
Temporal Logic Planning in Uncertain Environments with Probabilistic Roadmaps and Belief Spaces, pp. 6282-6287.

FrA18

Hybrid Systems I (Regular Session)

Chair: Normand-Cyrot, Dorothée CNRS
Co-Chair: Sanfelice, Ricardo G. University of California, Santa Cruz

10:00-10:20 FrA18.1
Zattoni, Elena Università di Bologna
Perdon, Anna Maria Università Politecnica delle Marche
Conte, Giuseppe Università Politecnica delle Marche
Moog, Claude H. CNRS

10:20-10:40 FrA18.2
Murali, Vishal Georgia Institute of Technology
Ames, Aaron D. California Institute of Technology
Verriest, Erik I. Georgia Institute of Technology

10:40-11:00 FrA18.3
Time-Optimal Control for the Hybrid Double Integrator with State-Driven Jumps, pp. 6301-6306.
Cristofaro, Andrea University of Oslo
Possier, Corrado Politecnico di Torino
Sassano, Mario University of Rome, Tor Vergata

11:00-11:20 FrA18.4
Mattoni, Mattia University of Roma La Sapienza
Monaco, Salvatore University of Roma La Sapienza
Normand-Cyrot, Dorothée CNRS

11:20-11:40 FrA18.5
Robust Regulation for Linear Systems Using Impulsive Observers, pp. 6313-6318.
Jaramillo, Oscar David Center for Research and Advanced Studies of the National Polytec.

11:40-12:00 FrA17.6

10:00-10:20 FrA19.1
Convex Optimization Over Sequential Linear Feedback Policies with Continuous-Time Chance Constraints, pp. 6325-6331.
Oguri, Kenshiro University of Colorado
Ono, Masahiro Jet Propulsion Laboratory, California Institute of Technology
McMahon, Jay University of Colorado

10:20-10:40 FrA19.2
Monte Carlo Tree Search with Optimal Computing Budget Allocation, pp. 6332-6337.
Li, Yunchuan University of Maryland
Fu, Michael C. University of Maryland
Xu, Jie George Mason University

10:40-11:00 FrA19.3
Sequential Dynamic Resource Allocation for Epidemic Control, pp. 6338-6343.
Fekom, Mathilde ENS Paris-Saclay
Vayatis, Nicolas Ecole Normale Superieure de Cachan
Kalogeratos, Argyris ENS Paris Saclay

11:00-11:20 FrA19.4
Sharma, Hiteshi USC
Jain, Rahul University of Southern California
Haskell, William B. National University of Singapore

11:20-11:40 FrA19.5
Stochastic Zero-Sum Differential Games for Forward-Backward SDEs, pp. 6350-6355.
Moon, Jun University of Seoul
Basar, Tamer University of Illinois, Urbana Champaign

11:40-12:00 FrA19.6
Optimization-Based Estimation of Expected Values with Application to Stochastic Programming, pp. 6356-6361.
Chinchilla, Raphael University of California, Santa Barbara
Hespanha, Joao P. University of California, Santa Barbara
FrA20

Distributed Control IV (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:20</td>
<td>A Randomized Block Subgradient Approach to Distributed Big Data Optimization</td>
<td>Farina, Francesco, Notarstefano, Giuseppe (University of Bologna)</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>A Graph-Theoretic Approach to the H_infty Performance of Leader-Follower Consensus on Directed Networks</td>
<td>Pirani, Mohammad, Sandberg, Henrik, Johansson, Karl H. (KTH Royal Institute of Technology)</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>Distributed Constraint-Coupled Optimization Over Random Time-Varying Graphs Via Primal Decomposition and Block Subgradient Approaches</td>
<td>Camisa, Andrea, Farina, Francesco, Notarstefano, Giuseppe (University of Bologna)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>Asynchronous Distributed Optimization Via Dual Decomposition and Block Coordinate Ascent</td>
<td>Lin, Yankai, Shames, Iman, Nesic, Dragan (University of Melbourne)</td>
</tr>
<tr>
<td>11:20-11:40</td>
<td>Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control</td>
<td>DAI, Xiang, Bourdais, Romain, Gueguen, Herve (CentraleSupélec)</td>
</tr>
</tbody>
</table>

FrA21

Networked Control Systems IV (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:20</td>
<td>Scheduling for Stabilization Over Capacity-Constrained Channels</td>
<td>Rokade, Kiran, Kamath, Gopal Krishna, Kalaimani, Rachel Kalpana (Indian Institute of Technology, Texas A&M University, Madras)</td>
</tr>
</tbody>
</table>

FrA22

Nonlinear Systems Identification I (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:20</td>
<td>Local Model Networks for the Identification of Nonlinear State Space Models</td>
<td>Schüssler, Max, Münker, Tobias, Nelles, Oliver (University of Siegen)</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>Variable Selection for a Nonparametric Nonlinear System by Directional Regression</td>
<td>Cheng, Changming, Bai, Er-Wei (Shanghai Jiaotong University, University of Iowa)</td>
</tr>
</tbody>
</table>

FrA23

Near-Optimal Solution to Non-Uniform Sampling Problem in Kalman Filtering

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:20</td>
<td>On Discrete-Time H-Inf Optimization under Intermittent Communications</td>
<td>Braksmyer, Maor, Mirkin, Leonid (Technion - IIT)</td>
</tr>
</tbody>
</table>

FrA24

On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:40-12:00</td>
<td>Sequence-Based Stochastic Receding Horizon Control Using IMM Filtering and Value Function Approximation</td>
<td>Rosenthal, Florian, Hanebeck, Uwe D. (Karlsruhe Institute of Technology)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics</td>
<td>Parasnis, Rohit Yashodhar, Franceschetti, Massimo, Touri, Behrouz (University of California, San Diego)</td>
</tr>
</tbody>
</table>

FrA25

Occupation Kernels and Densely Defined Liouville Operators for System Identification

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:20</td>
<td>Data-Based Robust MPC with Componentwise Hölder Kinky Inference</td>
<td>Manzano, Jose Maria, Limon, Daniel, Muñoz de la Peña, David, Callies, Jan-Peter (University of Seville, University of Oxford)</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>Near-Optimal Solution to Non-Uniform Sampling Problem in Kalman Filtering</td>
<td>Hartman, David (University of Maryland, College Park)</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>Event-Triggered Approximate Leader-Follower Consensus with Resilience to Byzantine Adversaries</td>
<td>Zegers, Federico (University of Florida)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>On Discrete-Time H-Inf Optimization under Intermittent Communications</td>
<td>Braksmyer, Maor, Mirkin, Leonid (Technion - IIT)</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>Sequence-Based Stochastic Receding Horizon Control Using IMM Filtering and Value Function Approximation</td>
<td>Rosenthal, Florian, Hanebeck, Uwe D. (Karlsruhe Institute of Technology)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics</td>
<td>Parasnis, Rohit Yashodhar, Franceschetti, Massimo, Touri, Behrouz (University of California, San Diego)</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics</td>
<td>Parasnis, Rohit Yashodhar, Franceschetti, Massimo, Touri, Behrouz (University of California, San Diego)</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics</td>
<td>Parasnis, Rohit Yashodhar, Franceschetti, Massimo, Touri, Behrouz (University of California, San Diego)</td>
</tr>
</tbody>
</table>
11:00-11:20 FrA23.4
Learning Safe Policies Via Primal-Dual Methods, pp. 6491-6497.
Paternain, Santiago University of Pennsylvania
Calvo-Fullana, Miguel University of Pennsylvania
de Oliveira Chamon, Luiz University of Pennsylvania
Fernando
Ribeiro, Alejandro University of Pennsylvania

11:40-12:00 FrA22.6
Simultaneous Localization and Parameter Estimation for Single Particle Tracking Via Sigma Points Based EM, pp. 6467-6472.
Lin, Ye Boston University
Andersson, Sean B. Boston University

10:00 FrA24 Iterative Learning Control I (Regular Session)

11:20-11:40 FrA23.5
Safe Learning-Based Control of Stochastic Jump Linear Systems: A Distributionally Robust Approach (I), pp. 6498-6503.
Schuurmans, Matthijs Katholieke Universiteit Leuven
Sopasakis, Pantelis Katholieke Universiteit Leuven
Patrinos, Panagiotis Katholieke Universiteit Leuven

11:00-11:20 FrA24.1
Adib Yaghmaie, Farnaz Linkoping University
Gustafsson, Fredrik Linkoping University

10:20-10:40 FrA24.2
Design of Iterative Learning Control Schemes for Spatially Interconnected Systems, pp. 6518-6523.
Maniarski, Robert University of Zielona Góra
Klimkowicz, Kamil University of Zielona Gora
Paszke, Wojciech University of Zielona Gora
Rogers, Eric University of Southampton

10:40-11:00 FrA24.3
Motion Control of a Soft Circular Crawling Robot Via Iterative Learning Control, pp. 6524-6529.
Chi, Haozhen Zhejiang University
Li, Xuefang Imperial College London
Li, Na National University of Singapore
Wu, Yan A*STAR Institute for Infocomm Research
Ren, Qinyuan Zhejiang University

11:00-11:20 FrA24.4
Emelianova, Julia Arzamas Polytechnic Institute of R.E. Alekseev Nizhny Novgorod
Pakshin, Pavel Arzamas Polytechnic Institute of R.E. Alekseev Nizhny Novgorod
Galkowski, Krzysztof University of Zielona Gora
Rogers, Eric University of Southampton

11:20-11:40 FrA24.5
Rizvi, Syed Ali Asad University of Virginia
Wei, Yusheng University of Virginia
Lin, Zongli University of Virginia

10:20-10:40 FrA23.2
Exploiting Fast Decaying and Locality in Multi-Agent MDP with Tree Dependence Structure (I), pp. 6479-6486.
Qu, Guannan Harvard University
Li, Na Harvard University

10:00-10:20 FrA23.1
Off-Policy Reinforcement-Learning Algorithm to Solve Minimax Games on Graphs (I), pp. 6473-6478.
Lopez Mejia, Victor Gabriel University of Texas, Arlington
Vamvoudakis, Kyriakos G. Georgia Institute of Technology
Wan, Yan University of Texas, Arlington
Lewis, Frank L. University of Texas, Arlington

10:40-11:00 FrA23.3
Completion of Rectangular Matrices Using Asymmetric Ramanujan Graphs, pp. 6487-6490.
Burmwal, Shantanu Prasad Indian Institute of Technology, Hyderabad
Vidyasagar, Mathukumalli Indian Institute of Technology, Hyderabad

11:00-11:20 FrA23.4
Learning Safe Policies Via Primal-Dual Methods, pp. 6491-6497.
Patrinos, Panagiotis Katholieke Universiteit Leuven
Sopasakis, Pantelis Katholieke Universiteit Leuven
Patrinos, Panagiotis Katholieke Universiteit Leuven

11:40-12:00 FrA22.6
Avoiding Chatter in an Online Co-Learning Algorithm Predicting Human Intention (I), pp. 6504-6509.
Young, Carol Georgia Institute of Technology
Yao, Ningshi Georgia Institute of Technology
Zhang, Fumin Georgia Institute of Technology
FrA25

Power Systems I (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Chair</th>
<th>Co-Chair</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:20</td>
<td>FrA25.1</td>
<td>Generalized Active Disturbance Rejection Controller for Load Frequency Control in Power Systems, pp. 6548-6553.</td>
<td>Jain, Shivam</td>
<td>Henrion, Didier</td>
<td>Indian Institute of Technology, Roorkee</td>
</tr>
<tr>
<td>10:20-10:40</td>
<td>FrA25.2</td>
<td>Learning Graph Parameters from Linear Measurements: Fundamental Trade-Offs and Application to Electric Grids, pp. 6554-6559.</td>
<td>Li, Tongxin</td>
<td>Werner, Lucien</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>FrA25.3</td>
<td>A Nonlinear Coordinated Approach to Enhance the Transient Stability of Wind Energy-Based Power Systems, pp. 6560-6565.</td>
<td>Morshed, Mohammad Javad</td>
<td>Fekih, Afef</td>
<td>University of Louisiana, Lafayette</td>
</tr>
<tr>
<td>11:00-11:20</td>
<td>FrA25.4</td>
<td>A Supervisory Control Structure for Voltage-Controlled Islanded DC Microgrids, pp. 6566-6571.</td>
<td>La Bella, Alessio</td>
<td>Nahata, Pulkit</td>
<td>Politecnico di Milano</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>FrA25.6</td>
<td>Robust Real-Time Inverter-Based Reactive Power Compensation, pp. 6578-6583.</td>
<td>Gwynn, Benjamin</td>
<td>de Callafon, Raymond A.</td>
<td>University of California, San Diego</td>
</tr>
</tbody>
</table>

FrA26

Payoff Dynamics and Higher-Order Learning in Population Games (Tutorial Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Chair</th>
<th>Co-Chair</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:05</td>
<td>FrA26.1</td>
<td>Introduction to Payoff Dynamics and Higher Order Learning in Population Games (I)*.</td>
<td>Shamma, Jeff S.</td>
<td></td>
<td>King Abdullah University of Science and Technology (KAUST)</td>
</tr>
<tr>
<td>10:05-10:35</td>
<td>FrA26.2</td>
<td>Population Games: Motivation and Foundational Concepts (I)*.</td>
<td>Shamma, Jeff S.</td>
<td></td>
<td>King Abdullah University of Science and Technology (KAUST)</td>
</tr>
<tr>
<td>10:35-11:10</td>
<td>FrA26.3</td>
<td>Stability Analysis: Potential and Contractive Games (I)*.</td>
<td>Martins, Nuno C.</td>
<td></td>
<td>University of Maryland</td>
</tr>
<tr>
<td>11:10-12:00</td>
<td>FrA26.4</td>
<td>From Population Games to Payoff Dynamics Models: A Passivity-Based Approach (I), pp. 6584-6601.</td>
<td>Park, Shinkyu</td>
<td>Martins, Nuno C.</td>
<td>University of Maryland</td>
</tr>
</tbody>
</table>

FrB01

Biomolecular Systems (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Chair</th>
<th>Co-Chair</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>FrB01.1</td>
<td>Combining Transcriptional and Translational Resource Allocation Controllers for Synthetic Circuits, pp. 6602-6609.</td>
<td>Zechner, Christoph</td>
<td>Gyorgy, Andras</td>
<td>Max Planck Institute of Molecular Cell Biology and Genetics</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>FrB01.2</td>
<td>Path Mutual Information for a Class of Biochemical Reaction Networks, pp. 6610-6615.</td>
<td>Duso, Lorenzo</td>
<td></td>
<td>Max Planck Institute of Molecular Cell Biology and Genetics</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>FrB01.3</td>
<td>Time-Scale Separation Based Design of Biomolecular Feedback Controllers, pp. 6616-6621.</td>
<td>Zechner, Christoph</td>
<td></td>
<td>Max Planck Institute of Molecular Cell Biology and Genetics</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>FrB01.4</td>
<td>How Cell-To-Cell Heterogeneity and Scarce Resources Shape the Population-Level Stability Profile of Toggle Switches, pp. 6622-6627.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reichensdörfer, Elias Technical University of Munich and BMW Group
Degel, Wolfgang BMW M
Odenthal, Dirk German Aerospace Center (dlr) Oberpfaffenhofen
Wollherr, Dirk Technische Universität München

Bayesian Learning of Tire Friction with Automotive-Grade Sensors by Gaussian-Process State-Space Models, pp. 6681-6686.

Bemtrop, Karl Mitsubishi Electric Research Labs
Kitano, Hiroaki Mitsubishi Electric Corp., Adv. Technology R&D Center

A One-Step Feasible Negotiation Algorithm for Distributed Trajectory Generation of Autonomous Vehicles, pp. 6687-6693.

Kneissl, Maximilian DENSO Automotive Deutschland GmbH
Molin, Adam DENSO Automotive Deutschland GmbH
Esen, Hasan DENSO Automotive Deutschland GmbH
Hirche, Sandra Technische Universität München

Robust Hierarchical MPC for Handling Long Horizon Demand Forecast Uncertainty with Application to Automotive Thermal Management, pp. 6694-6699.

Amini, Mohammad Reza University of Michigan
Kolmanovsky, Ilya V. University of Michigan
Sun, Jing University of Michigan

Li, Boyuan Cranfield University
Siampis, Efstathios Delta Motorsport
Lin, Chenhui Cranfield University
Longo, Stefano Cranfield University
Velenis, Efstathios Cranfield University
Online Supervisory Control of Networked Discrete-Event Systems with Control Delays (I), pp. 6706-6711.
Liu, Zhaocong Shanghai Jiao Tong University
Yin, Xiang Shanghai Jiao Tong University
Shu, Shaolong Tongji University
Li, Shaoyuan Shanghai Jiao Tong University

Keroglu, Christoforos University of Michigan, Ann Arbor
Hadjicostis, Christoforos N. University of Cyprus

Verification of Nonblockingness in Bounded Petri Nets with a Semi-Structural Approach (I), pp. 6718-6723.
Gu, Chao Xidian University & University of Cagliari
Ma, Ziyue Xidian University
Li, Zhiwu Xidian University
Guia, Alessandro University of Cagliari

Miao, Chengshi Tongji University
Shu, Shaolong Tongji University
Lin, Feng Wayne State University

Zhu, Yuting Nanyang Technological University
Lin, Liyong University of Toronto
Ware, Simon Nanyang Technological University
Su, Rong Nanyang Technological University

Yang, Jingkai Sun Yat-Sen University
Deng, Weilin Sun Yat-Sen University
Jiang, Cheng Sun Yat-Sen University
Qiu, Daowen Sun Yat-Sen University

Robust Control II (Regular Session)
Chair: Manchester, Ian R. University of Sydney
Co-Chair: Mohajerin Esfahani, Peyman Delft University of Technology

Robust Linear Quadratic Regulator: Exact Tractable Reformulation, pp. 6742-6747.
Jongeneel, W. Delft University of Technology
Summers, Tyler H. University of Texas, Dallas
Mohajerin Esfahani, Peyman Delft University of Technology
Chair: Rakotondrabe, Micky	FEMTO-ST Institute
Co-Chair: Boudaoud, Mokrane	Sorbonne Université
Organizer: Rakotondrabe, Micky	ENIT Tarbes
Organizer: Boudaoud, Mokrane	Sorbonne Université
Organizer: Al Janaideh, Mohammad	Memorial University

FrB071

| Zarif Mansour, Sepehr | 1990 |
| Seethaler, Rudolf | UBC |

FrB072

Iterative Learning Control for High-Speed Rosette Trajectory Tracking (I), pp. 6832-6837.

Nikoienejad, Nastaran	University of Texas, Dallas
Maroufi, Mohammad	University of Texas, Dallas
Moheimani, S.O. Reza	University of Texas, Dallas

FrB073

3D Hinf CONTROLLER DESIGN for an EXPERIMENTAL SCANNING TUNNELING MICROSCOPE DEVICE (I), pp. 6838-6843.
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:20-15:40</td>
<td>FrB08.5</td>
<td>Port-Hamiltonian Modeling, Discretization and Feedback Control of a Circular Water Tank</td>
<td>Cardoso-Ribeiro, Flavio Luiz, Instituto Tecnológico de Aeronáutica Brugnoli, Andrea, ISAE-SUPAERO Matignon, Denis, ISAE Lefevre, Laurent, Grenoble Institute of Technology (Grenoble INP)</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>FrB09.6</td>
<td>Achieving Efficient Collaboration in Decentralized Heterogeneous Teams Using Common-Pool Resource Games</td>
<td>Gupta, Piyush, Michigan State University Bopardikar, Shaunak D., Michigan State University Srivastava, Vaibhav, Michigan State University</td>
</tr>
<tr>
<td>14:00-14:20</td>
<td>FrB10.1</td>
<td>A Generalization of Ackermann's Formula for the Design of Continuous and Discontinuous Observers</td>
<td>Niederwieser, Helmut, Graz University of Technology, BIOENERGY 2020+ GmbH Koch, Stefan, Graz University of Technology Reichartinger, Markus, Graz University of Technology</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>FrB10.3</td>
<td>Finite-Time Stabilization of High-Order Sliding Mode Dynamics with Lower-Triangular Structure</td>
<td>Liu, Lu, Jiangsu University Zheng, Wei Xing, Western Sydney University Ding, Shihong, Jiangsu University</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>FrB10.4</td>
<td>An Anti-Windup Scheme for the Super-Twisting Algorithm</td>
<td>Golkani, Mohammad Ali, Graz University of Technology Koch, Stefan, Graz University of Technology Seeber, Richard, Graz University of Technology Reichartinger, Markus, Graz University of Technology Hor, Martin, Graz University of Technology</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>FrB10.5</td>
<td>Sliding Motions on SO(3), Sliding Subgroups</td>
<td>Gomez-Cortes, Gian C., CINVESTAV-IPN Castaños, Fernando, CINVESTAV Davila, Jorge, Instituto Politecnico Nacional</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>FrB10.6</td>
<td>Sliding Mode Control of Discrete-Time 2-D Roesser Systems Via Event-Based Scheme</td>
<td>Yang, Rongni, Shandong University Zheng, Wei Xing, Western Sydney University</td>
</tr>
</tbody>
</table>
FrB11
Estimation V (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>FrB11.1</td>
<td>An Unknown Input Switched Functional Interval Observer for Vehicle Lateral Velocity Estimation</td>
<td>Ifqir, Sara; Ichalal, Dalil; Ait Oufroukh, Naima; Mammar, Said</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>FrB11.2</td>
<td>Sparse Linear Regression with Compressed and Low-Precision Data Via Concave Quadratic Programming</td>
<td>Cerone, Vito; Fosson, Sophie; Regruto, Diego</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>FrB11.3</td>
<td>Topology Selection Using Monte Carlo Expectation and Maximization Algorithm with L_1-Type Regularization for Count Data</td>
<td>Sathish, VuruKonda; Chakraborty, Debraj; Mukhopadhyay, Siuli</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>FrB11.4</td>
<td>Efficient Computation of the Continuous-Discrete Extended Kalman Filter Sensitivities Applied to Maximum Likelihood Estimation</td>
<td>Boiroux, Dimitri; Ritschel, Tobias Kasper; Poulsen, Niels Kjelstad; Madsen, Henrik; Jorgensen, John Bagterp</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>FrB11.5</td>
<td>Estimating Private Beliefs of Bayesian Agents Based on Observed Decisions</td>
<td>Mattila, Robert; Lourenço, Inês; Rojas, Cristian R; Krishnamurthy, Vikram; Wahlberg, Bo</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>FrB11.6</td>
<td>Iterative Approximate Nonlinear Inference Via Gaussian Message Passing on Factor Graphs</td>
<td>Herzog, né Hoffmann, Christian; Petersen, Eike; Rostalski, Philipp</td>
</tr>
</tbody>
</table>

FrB12
Advances in Constructive Techniques and Use of Lyapunov Functions (Invited Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>FrB12.1</td>
<td>On Robust Stability of Sine-Gordon Equation (I)</td>
<td>Efimov, Denis; Fridman, Emilia; Richard, Jean-Pierre</td>
</tr>
<tr>
<td>14:20-14:40</td>
<td>FrB12.2</td>
<td>A Fusion of Max and Sum-Separable Lyapunov Functions Capable of Addressing IISS in Networks (I)</td>
<td>Ito, Hiroshi; Kellett, Christopher M.; Wang, Lei</td>
</tr>
<tr>
<td>14:40-15:00</td>
<td>FrB12.3</td>
<td>Stabilization and Robustness Analysis for a Chain of Saturating Integrators Arising in the Visual Landing of Aircraft (I)</td>
<td>Burion, Laurent; Malisoff, Michael; Mazenc, Frederic</td>
</tr>
<tr>
<td>15:00-15:20</td>
<td>FrB12.4</td>
<td>Adaptive Tracking Control Via Immersion and Invariance: An (i)ISS Perspective (I)</td>
<td>Wang, Wei; Sanyal, Amit; Viswanathan, Sasi</td>
</tr>
<tr>
<td>15:20-15:40</td>
<td>FrB12.5</td>
<td>Discrete Finite-Time Stable Position Tracking Control of Unmanned Vehicles</td>
<td>Hamrah, Reza; Sanyal, Amit; Coogan, Samuel</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>FrB12.6</td>
<td>Weighted Polar Finite Time Control Barrier Functions with Applications to Multi-Robot Systems</td>
<td>Srinivasan, Mohit; Hyun, Nak-seung Patrick; Coogan, Samuel</td>
</tr>
</tbody>
</table>

FrB13
Uncertain Systems II (Regular Session)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:20</td>
<td>FrB13.1</td>
<td>Asymptotic Stability of Uncertain Lagrangian Systems with Prescribed Transient Response</td>
<td>Verginis, Christos; Dimarogonas, Dimos V.</td>
</tr>
</tbody>
</table>
14:20-14:40 FrB13.2

Switching between Sensor Configurations for Uncertain Systems; Application to Control of Anesthesia, pp. 7043-7048.

van Heusden, Klaske
Dumont, Guy A.
University of British Columbia

14:40-15:00 FrB13.3

Leurent, Edouard
Efimov, Denis
INRIA

Raissi, Tarek
Conservatoire National Des Arts Et Métiers

Perruquet, Wilfrid
Ecole Centrale de Lille

15:00-15:20 FrB13.4

Robustness Analysis of Initial Excitation Based Adaptive Control, pp. 7055-7062.

Basu Roy, Sayan
Indraprastha Institute of Information Technology Delhi

Bhasin, Shubhendu
Indian Institute of Technology, Delhi

15:20-15:40 FrB13.5

Learning and Information Manipulation: Repeated Hypergames for Cyber-Physical Security, pp. 7063-7068.

Bakker, Craig
Pacific Northwest National Laboratory

Bhattacharya, Arnab
Pacific Northwest National Laboratory

Chatterjee, Samrat
Pacific Northwest National Laboratory

Vrabie, Draguna
Pacific Northwest National Laboratory

15:40-16:00 FrB13.6

Braga, Marcio F.
Federal University of Ouro Preto (UFOP)

Campos, Victor
Universidade Federal de Minas Gerais

Frezzatto, Luciano
Universidade Federal de Minas Gerais

FrB14

Stability of Nonlinear Systems II (Regular Session)

Chair: Polyaakov, Andrey
INRIA Lille Nord-Europe

Co-Chair: Chitour, Yacine
Université Paris-Sud, CNRS, Supelec

14:00-14:20 FrB14.1

Scattering Transformation for Planar Conic Systems with Nonlinear Sector Boundaries, pp. 7075-7080.

Polushin, Ilya G.
Western University

Dashkovskiy, Sergey N.
University of Wuerzburg

14:20-14:40 FrB14.2

Kim, Minwoo
Korea Advanced Institute of Science & Technology (KAIST)

Phogat, Karmvir Singh
IIT Bombay

FrB15

Optimal Control V (Regular Session)

Chair: De Marchi, Alberto
Bundeswehr University Munich

Co-Chair: Streif, Stefan
Technische Universität Chemnitz

14:00-14:20 FrB15.1

Model Predictive Control with Stage Cost Shaping Inspired by Reinforcement Learning, pp. 7110-7115.

Beckenbach, Lukas
Chemnitz University of Technology

Osinenko, Pavel
Technische Universität Chemnitz

Streif, Stefan
Technische Universität Chemnitz

14:20-14:40 FrB15.2

Fontes, Fernando A. C. C.
UniversidadedoPorto

Halder, Abhishek
University of California, Santa Cruz

Becerril, Jorge
UniversidadedoPorto

Kumar, P. R.
Texas A&M University

14:40-15:00 FrB15.3

De Marchi, Alberto
Bundeswehr University Munich

15:00-15:20 FrB15.4

Time-Delayed Surveillance-Evasion Games, pp. 7128-7133.

Cartee, Elliot
Cornell University

Lai, Lexiao
University of Hong Kong

Song, Qianli
University of Hong Kong

Vladimirsky, Alexander
Cornell University

146

Vincent, Tyrone L. Colorado School of Mines
Tang, Gongsuo Colorado School of Mines
Weddle, Peter Colorado School of Mines

FrB15.6

15:40-16:00 FrB16.6

Robust Maximization of Correlated Submodular Functions, pp. 7177-7183.

Hou, QiQiHong Kong University of Sci. & Tech
Clark, Andrew Worcester Polytechnic Institute

FrB17

Encrypted Control and Optimization (Invited Session)

Chair: Schulze Darup, Moritz University of Paderborn
Co-Chair: Alexandru, Andreea B. University of Pennsylvania B.
Organizer: Schulze Darup, Moritz University of Paderborn
Organizer: Alexandru, Andreea B. University of Pennsylvania B.

14:00-14:20 Rhodes EF

FrB17.1

Teranishi, Kaoru University of Electro-Communications
Shimada, Naoki National Institute of Technology, Ishikawa College
Kogiso, Kiminao University of Electro-Communications

14:20-14:40 FrB17.2

Kim, Junsoo Seoul National University
Shim, Hyungbo Seoul National University

14:40-15:00 FrB17.3

Encrypted Cooperative Control Revisited (I), pp. 7196-7202.

Alexandru, Andreea B. University of Pennsylvania
Schulze Darup, Moritz University of Paderborn
Pappas, George J. University of Pennsylvania

15:00-15:20 FrB17.4

Privacy Preservation in Distributed Optimization Via Dual Decomposition and ADMM (I), pp. 7203-7208.

Tjell, Katrine Aalborg University
Wisniewski, Rafal Aalborg University

15:20-15:40 FrB17.5

Sultangazin, Alimzhan University of California, Los Angeles
Tabuada, Paulo University of California, Los Angeles

15:40-16:00 FrB17.6

Encrypted Cloud-Based Control Using Secret Sharing with One-Time Pads (I), pp. 7215-7221.

Schulze Darup, Moritz University of Paderborn
Jager, Tibor Paderborn University

FrB18

Hybrid Systems II (Regular Session)

Chair: Teel, Andrew R. University of California, Santa Barbara

147
A New Hybrid Control Strategy for the Global Attitude Tracking Problem, pp. 7222-7227.

Wang, Miaomiao
Western University

Tayebi, Abdelhamid
Lakehead University

14:20-14:40 FrB18.2

Monotonicity of Functions Along Flows of Hybrid Inclusions, pp. 7228-7233.

Maghenem, Mohamed Adlene
University of California Santa Cruz

Melis, Alessandro
University of Bologna

Sanfelice, Ricardo G.
University of California, Santa Cruz

14:40-15:00 FrB18.3

Baradaran Hosseini, Matina
University of California, Santa Barbara

Teel, Andrew R.
University of California, Santa Barbara

15:00-15:20 FrB18.4

Lattice Piecewise Affine Representations on Convex Projection Regions, pp. 7240-7245.

Xu, Jun
Harbin Institute of Technology, Shenzhen

Wang, Shuning
Tsinghua University

15:20-15:40 FrB18.5

de Carolis, Giovanni
University of Roma Tor Vergata

Saccon, Alessandro
Eindhoven University of Technology

15:40-16:00 FrB18.6

Manganini, Giorgio
United Technologies Research Centre

Riverso, Stefano
United Technologies Research Centre Ireland Ltd

Kouramas, Konstantinos
United Technologies Research Center

FrB19

Stochastic Optimal Control II (Regular Session)

Chair: Mahajan, Aditya
McGill University

Co-Chair: Chakravorty, Suman
Texas A&M University

14:00-14:20 FrB19.1

Distributed Control of Thermostatically Controlled Loads: Kullback-Leibler Optimal Control in Continuous Time, pp. 7258-7265.

Busic, Ana
INRIA

Meyn, Sean P.
University of Florida

14:20-14:40 FrB19.2

The Maximal Hitting-Time Stochastic Reachability Problem, pp. 7266-7272.

FrB19

Stochastic Optimal Control II (Regular Session)

Galliéni 5

Chair: Mahajan, Aditya
McGill University

Co-Chair: Chakravorty, Suman
Texas A&M University

14:00-14:20 FrB19.1

Distributed Control of Thermostatically Controlled Loads: Kullback-Leibler Optimal Control in Continuous Time, pp. 7258-7265.

Busic, Ana
INRIA

Meyn, Sean P.
University of Florida

14:20-14:40 FrB19.2

The Maximal Hitting-Time Stochastic Reachability Problem, pp. 7266-7272.

14:40-15:00 FrB19.3

P. Vinod, Abraham
University of Texas, Austin

Oishi, Meeko
University of New Mexico

15:00-15:20 FrB19.4

A Decoupled Data Based Control (D2C) Approach to Generalized Motion Planning Problems, pp. 7281-7286.

Yu, Dan
Nanjing University of Aeronautics and Astronautics

Chakravorty, Suman
Texas A&M University

15:20-15:40 FrB19.5

Jang, Sunho
Seoul National University

Yang, Insoon
Seoul National University

15:40-16:00 FrB19.6

Restless Bandits with Controlled Restarts: Indexability and Computation of Whittle Index, pp. 7294-7300.

Akbarzadeh, Nima
Student

Mahajan, Aditya
McGill University

FrB20

Cooperative Control I (Regular Session)

Rhodes 10

Chair: Cai, Kai
Osaka City University

Co-Chair: Qu, Zhihua
University of Central Florida

14:00-14:20 FrB20.1

Robust Output Regulation of Networked Heterogeneous Linear Agents by Distributed Internal Model Principle, pp. 7301-7306.

Kawamura, Satoshi
Osaka City University

Cai, Kai
Osaka City University

Kishida, Masako
National Institute of Informatics

14:20-14:40 FrB20.2

Global and Semi-Global Regulated State Synchronization for Homogeneous Networks of Non-Introspective Agents in Presence of Input Saturation, pp. 7307-7312.

Liu, Zhenwei
Northeastern University

Saberi, Ali
Washington State Univ

Stoorvogel, Anton A.
University of Twente

Nojavanzadeh, Donya
Washington State University

14:40-15:00 FrB20.3

Cooperative Design of Systems of Systems against Attack on One Subsystem, pp. 7313-7318.

Talebi, Shahrar
University of Washington

Simaan, Marwan A.
University of Central Florida

Qu, Zhihua
University of Central Florida

15:00-15:20 FrB20.4

Strategies for Defending a Coastline against Multiple Attackers, pp. 7319-7324.

Garcia, Eloy
Air Force Research Laboratory

Von Moll, Alexander
Air Force Research Laboratory

Casbeer, David W.
Air Force Research Laboratory
Team Composition for Perimeter Defense with Patrollers and Defenders, pp. 7325-7332.
Shishtka, Daigo
Paulos, James
Dorothy, Michael
Hsieh, M. Ani
Kumar, Vijay
University of Pennsylvania
Command Army Research Laboratory
University of Pennsylvania
University of Pennsylvania
University of Pennsylvania

Colombo, Leonardo Jesus
Garcia de Marina, Hector
Barbero-Linan, Maria
Martin de Diego, David
Consejo Superior de Investigaciones Científicas (CSIC)
University of Southern Denmark
Technical University of Madrid
High Council for Scientific Research

Networked Control Systems V (Regular Session)
Chair: Tanaka, Takashi
Co-Chair: Lucia, Walter
University of Texas, Austin
Concordia University

Wang, Xin
Ishii, Hideaki
Du, Linkang
Cheng, Peng
Chen, Jiming
Zhejiang University
Tokyo Institute of Technology
Zhejiang University
Zhejiang University
Zhejiang University

Sparse LQR Synthesis Via Information Regularization, pp. 7345-7351.
Stefan, Jeb
Tanaka, Takashi
University of Texas, Austin
University of Texas, Austin

Javed, Muhammad Umar
Poveda, Jorge I.
Chen, Xudong
University of Colorado, Boulder
University of Colorado, Boulder
University of Colorado, Boulder

Sharf, Miel
Zelazo, Daniel
Israel Institute of Technology
Technion - Israel Institute of Technology

Knorn, Steffi
Otto-Von-Guericke University Magdeburg

Resilient Control for Cyber-Physical Systems Subject to Replay Attacks, pp. 7370-7375.
Franze’, Giuseppe
Tedesco, Francesco
Lucia, Walter
University of Calabria
University of Calabria
Concordia University

Paoletti, Simone
Savelli, Iacopo
Garulli, Andrea
Vicino, Antonio
University of Siena
University of Siena
University of Siena
University of Siena

Learning Discrepancy Models from Experimental Data, pp. 7389-7396.
Kaheman, Kadierdan
Kaiser, Eureka
Strom, Benjamin
Kutz, J. Nathan
Brunton, Steven L.
University of Washington

Decuyper, Jan
Dreesen, Philippe
Schoukens, Johan
Runacres, Mark C
Tiels, Koen
Vrije Universiteit Brussel
Vrije Universiteit Brussel
Vrije Universiteit Brussel
Vrije Universiteit Brussel
Université Libre de Bruxelles

Nonlinear Input Design As Optimal Control of a Hamiltonian System, pp. 7403-7408.
Umenberger, Jack
Schön, Thomas (Bo)
Uppsala University
Uppsala University

Berger, Guillaume O.
Jungers, Raphaël M.
University of Louvain
University of Louvain
Large-Scale Distributed Optimization and Decentralized Control I
Invited Session

Chair: Nedic, Angelia
Co-Chair: Uribe, Cesar

Organizer: Uribe, Cesar
Organizer: Nedic, Angelia
Organizer: Olshesky, Alexander

FrB23.1 14:00-14:20

Convergence and Iteration Complexity of Policy Gradient Method for Infinite-Horizon Reinforcement Learning (I), pp. 7415-7422.

- Zhang, Kaiqing
 University of Illinois, Urbana-Champaign
- Koppel, Alec
 U.S. Army Research Laboratory
- Zhu, Hao
 University of Texas, Austin
- Basar, Tamer
 University of Illinois, Urbana-Champaign

FrB23.2 14:20-14:40

Totally Asynchronous Distributed Quadratic Programming with Independent Stepsizes and Regularizations (I), pp. 7423-7428.

- Ubl, Matthew
 University of Florida
- Hale, Matthew
 University of Florida

FrB23.3 14:40-15:00

Lower Bound Performances for Average Consensus in Open Multi-Agent Systems (I), pp. 7429-7434.

- Monnoyer de Galland de Carnières, Charles
 Université Catholique de Louvain
- Hendrickx, Julien M.
 Université Catholique de Louvain

FrB23.4 15:00-15:20

On Primal and Dual Approaches for Distributed Stochastic Convex Optimization Over Networks (I), pp. 7435-7440.

- Dvinskikh, Darina
 Weierstrass Institute for Applied Analysis and Stochastics
- Gorbunov, Eduard
 Moscow Institute of Physics and Technology
- Gasnikov, Alexander
 Moscow Institute of Physics and Technology
- Dvurechensky, Pavel
 Weierstrass Institute for Applied Analysis and Stochastics
- Uribe, Cesar
 Massachusetts Institute of Technology

FrB23.5 15:20-15:40

Graph Topology and Subsystem Centrality in Approximately Dissipative System Interconnections, pp. 7441-7447.

- Köhler, Philipp N.
 University of Stuttgart
- Muller, Matthias A.
 Leibniz University Hannover
- Allgöwer, Frank
 University of Stuttgart

FrB23.6 15:40-16:00

Convergence Rate Analysis of a Subgradient Averaging Algorithm for Distributed Optimisation with Different Constraint Sets, pp. 7448-7453.

- Romao, Licio
 University of Oxford
- Margellos, Kostas
 University of Oxford
- Notarstefano, Giuseppe
 University of Bologna

Ratha, Anubhav, Technical University of Denmark (DTU)
Kazempour, Jalal, Technical University of Denmark
Virag, Ana, Flemish Institute for Technological Research (VITO)
Pinson, Pierre, Dtu Electrical Engineering

Exponentially Fast Estimation of Power System Oscillation Modes Using Distributed Phasor Data, pp. 7506-7511.

Liu, Ji, Stony Brook University
Chakraborty, Aranya, North Carolina State University
Basar, Tamer, University of Illinois, Urbana-Champaign

Data-Driven Distributed Reactive Power Sharing in Microgrids, pp. 7512-7517.

Madani, Seyed, EPFL
Karimi, Alireza, EPFL

Toward Distributed Stability Analytics for Power Systems with Heterogeneous Bus Dynamics, pp. 7518-7523.

Yang, Peng, Tsinghua University
Liu, Feng, Tsinghua University
Wang, Zhaojian, Tsinghua University
Shen, Chen, Tsinghua University
Yi, Jun, China Electric Power Research Institute
Lin, Weifang, China Electric Power Research Institute

Nguyen, Hieu, University of Utah
Parvania, Masood, University of Utah
Kharongekar, Pramod, University of California, Irvine

15:30-17:50 Mediterranean 1

FrC01 Relative Entropy of a Free-Matrix-Based Lyapunov-Krasovskii Functional, pp. 7556-7560

Borri, Alessandro, IASI-CNR
Palermo, Pasquale, IASI-CNR
Singh, Abhaydut, University of Delaware

FrC02 Convex Synthesis of Strictly Negative Imaginary Feedback Controllers, pp. 7578-7583.

Caverly, Ryan James, University of Minnesota
Chakraborty, Manash, University of Minnesota
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30-17:00</td>
<td>FrC03</td>
<td>GPU Based Parameterized NMPC Scheme for Control of Half Car Vehicle with Semi-Active Suspension System</td>
<td>Murali Madhavan Rathai, KARTHIK, Sename, Olivier, Alamir, Mazen, CNRS, GIPSA Lab, Grenoble, Grenoble INP / GIPSA-Lab, CNRS / University of Grenoble</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>FrC04.1</td>
<td>Cyber-Security of Discrete-Event Systems (Invited Session)</td>
<td>Chair: Su, Rong, Co-Chair: Yin, Xiang, Organizer: Yin, Xiang, Organizer: Cai, Kai, Organizer: Su, Rong, Organizer: Tong, Yin, Nanyang Technological University, Osaka City University, Nanyang Technological University, Southwest Jiaotong University</td>
</tr>
<tr>
<td>17:30-18:00</td>
<td>FrC04.2</td>
<td>Insecure Multiple Channel Networks (Invited Session)</td>
<td>Organizer: Cai, Kai, Organizer: Su, Rong, Organizer: Cai, Kai, University of Oxford, Osaka City University, Shanghai Jiaotong University</td>
</tr>
<tr>
<td>18:00-18:30</td>
<td>FrC04.3</td>
<td>K-Delayed Strong Detectability of Discrete-Event Systems (Invited Session)</td>
<td>Zhang, Kuize, Giua, Alessandro, KTH Royal Institute of Technology, University of Cagliari</td>
</tr>
<tr>
<td>18:30-19:00</td>
<td>FrC04.4</td>
<td>Abstraction-Based Synthesis of Opacity-Enforcing Controllers Using Alternating Simulation Relations (Regular Session)</td>
<td>Hou, Junyao, Yinh, Xiang, Li, Shaoqian, Zamani, Majid, Shanghai Jiaotong University, Shanghai Jiaotong University, University of Colorado Boulder</td>
</tr>
<tr>
<td>19:00-19:30</td>
<td>FrC04.5</td>
<td>Towards Bounded Synthesis of Resilient Supervisors (Regular Session)</td>
<td>Lin, Liyong, Zhu, Yuting, Su, Rong, Nanyang Technological University, Nanyang Technological University, Nanyang Technological University</td>
</tr>
<tr>
<td>19:30-20:00</td>
<td>FrC04.6</td>
<td>Current-State Opacity Verification in Modular Discrete Event Systems (Regular Session)</td>
<td>Tong, Yin, Lan, Hao, Southwest Jiaotong University, Southwest Jiaotong University</td>
</tr>
<tr>
<td>20:00-20:30</td>
<td>FrC05</td>
<td>Learning-Based Predictive Control for MIMO Systems (Regular Session)</td>
<td>Chair: Lessard, Laurent, Co-Chair: Van Scoy, Bryan, University of Wisconsin-Madison, University of Wisconsin-Madison</td>
</tr>
</tbody>
</table>

FrC02.4

Tartaglione, Gaetano, University of Napoli Parthenope

Anolidays, Marco, University of Napoli Parthenope

Amato, Francesco, University of Napoli Federico II

17:50-18:10 FrC02.5

From Reference Model Selection to Controller Validation: Application to Loewner Data-Driven Control, pp. 7590-7595.

Kergus, Pauline, ONERA

Olivi, Martine, INRIA

Poussot-Vassal, Charles, ONERA

Demourant, Fabrice, ONERA

17:50-18:10 FrC03.1

Autonomous Control II (Regular Session)

Chair: Yu, Min, Imperial College London

Co-Chair: Cannon, Mark, University of Oxford

16:30-16:50 FrC03.2

FrC03

Chokor, Abbas, Université de Technologie de Compiègne

Doughiati, Moustapha, Université de Technologie de Compiègne

Taji, Reine, Heudiasyc, UTC

Charara, Ali, Umr Cnrs 6599

17:10-17:30 FrC03.3

Distributed Nested PI Slip Control for Longitudinal and Lateral Motion in Four In-Wheel Motor Drive Electric Vehicle, pp. 7609-7614.

Amato, Gerardo, University of Rome Tor Vergata

Marino, Riccardo, University of Rome Tor Vergata

17:30-17:50 FrC03.4

FrC04

Robust Control for a Full-Car Prototype of Series Active Variable Geometry Suspension, pp. 7615-7622.

Yu, Min, Imperial College London

Cheng, Cheng, Huazhong University of Science and Technology

Evangelou, Simos Andreas, Imperial College

Dini, Daniele, Imperial College London

17:50-18:10 FrC03.5

Son, Tong, Siemens PLM Software

Nguyen, Quan, Massachusetts Institute of Technology (MIT)

18:10-18:30 FrC03.6

FrC05

Learning-Based Predictive Control for MIMO Systems, pp. 7671-7676.

Salvador, Jose R., Universidad de Sevilla
Terzi, Enrico
Farina, Marcello
Ramirez, Daniel R.
Fagiano, Lorenzo
Muñoz de la Peña, David
Scattolini, Riccardo

Politecnico di Milano
Universidad de Sevilla
Politecnico di Milano
Politecnico di Milano
Universidad de Sevilla
Politecnico di Milano

16:50-17:10 FrC05.2

Integral Quadratic Constraints: Exact Convergence Rates and Worst-Case Trajectories, pp. 7677-7682.

Van Scoy, Bryan
Lessard, Laurent

University of Wisconsin—Madison
University of Wisconsin-Madison

17:10-17:30 FrC05.3

Tripathy, Niladri Sekhar
Chamanbaz, Mohammadreza
Bouffanais, Roland

Singapore University of Technology and Design
Singapore University of Technology and Design
Singapore University of Technology and Design

17:30-17:50 FrC05.4

Unified Necessary and Sufficient Conditions for the Robust Stability of Interconnected Sector-Bounded Systems, pp. 7690-7695.

Cyrus, Saman
Lessard, Laurent

University of Wisconsin-Madison
University of Wisconsin-Madison

17:50-18:10 FrC05.5

Parallel Explicit Tube Model Predictive Control, pp. 7696-7701.

Wang, Kai
Jiang, Yuning
Oravec, Juraj
Villanueva, Mario E.
Houska, Boris

ShanghaiTech University
ShanghaiTech University
Slovak University of Technology in Bratislava
ShanghaiTech University
ShanghaiTech University

18:10-18:30 FrC05.6

Direct H-Infinity Synthesis of Reduced Order Controllers for a Class of Single-Input Plants, pp. 7702-7707.

Ghosh, Arun
Chattopadhyay, Susobhan
Meena, Jairam

Indian Institute of Technology
Indian Institute of Technology, Kharagpur
Intel Corporation

17:10-17:30 FrC06.3

Computing Common Factors of Matrix Polynomials with Applications in System and Control Theory, pp. 7721-7726.

Fazzi, Antonio
Guglielmi, Nicola
Markovsky, Ivan

Gran Sasso Science Institute
University of L'Aquila
Vrije Universiteit Brussel

17:30-17:50 FrC06.4

Liu, Kairong
Li, Meilun
She, Zhikun

Beihang University
Beihang University
Beihang University

17:50-18:10 FrC06.5

Bakker, Craig
Nowak, Kathleen
Rosenthal, Steven

Pacific Northwest National Laboratory
Pacific Northwest National Laboratory
Pacific Northwest National Laboratory

18:10-18:30 FrC06.6

On Trade-Offs between Computational Complexity and Accuracy of Electrochemistry-Based Battery Models, pp. 7740-7745.

Khalik, Zuan
Bergveld, Hendrik Johannes
Donkers, M.C.F.

Eindhoven University of Technology
Eindhoven University of Technology
Eindhoven University of Technology

16:30-16:50 FrC07.1

Real-Time Predictive Control for Precision Machining, pp. 7746-7751.

Liniger, Alexander
Varano, Luca
Lygeros, John

ETH Zurich
ETH Zurich
ETH Zurich

16:50-17:10 FrC07.2

Stability Analysis for Active Control with a Sky-Hook and Ground-Hook Inerter-Damper Configuration, pp. 7752-7757.

Hu, Yinlong
Chen, Michael Z. Q.

Hohai University
Nanjing University of Science and Technology

17:10-17:30 FrC07.3

CPRG Assisstive Motion Control for Variable Stiffness Actuators, pp. 7758-7763.

Misgeld, Berno Johannes
Engelbert
Efken, Marc
Liu, Lin
Iwasaki, Tetsuya

MedIT, RWTH Aachen University
ETH Zurich
RWTH Aachen University
RWTH Aachen University
University of California, Los Angeles
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30-17:50</td>
<td>FrC07.4</td>
<td>Predictive Control of Nano-Positioning Stage Using Recurrent-Neural-Network-Based Inversion Model</td>
<td>Leonhardt, Steffen, RWTH Aachen University</td>
</tr>
<tr>
<td>17:50-18:10</td>
<td>FrC07.5</td>
<td>Implicit IDA-PBC for Underactuated Mechanical Systems: An LMI-Based Approach</td>
<td>Lou, Daming, Eindhoven University of Technology</td>
</tr>
<tr>
<td>18:10-18:30</td>
<td>FrC07.6</td>
<td>Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers That Allow for Wheel Slip</td>
<td>Cieza, Oscar, TU Ilmenau; Castaños, Fernando, CINVESTAV; Reger, Johann, TU Ilmenau</td>
</tr>
<tr>
<td>16:30-16:50</td>
<td>FrC08.1</td>
<td>An Extended Model Order Reduction Technique for Linear Delay Systems</td>
<td>Naderi Lordejani, Sajad, Eindhoven University of Technology; Besselink, Bart, University of Groningen; Van De Wouw, Nathan, Eindhoven University of Technology</td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>FrC08.2</td>
<td>An Interconnection-Based Interpretation of the Loewner Matrices</td>
<td>Simard, Joel David, Imperial College London; Astolfi, Alessandro, Imperial College & University of Rome</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>FrC08.3</td>
<td>Synchronization Preserving Model Reduction of Multi-Agent Network Systems by Eigenvalue Assignments</td>
<td>Yu, Lanlin, University of Science and Technology of China; Cheng, Xiaodong, Eindhoven University of Technology; Scherpen, Jacquelien M.A., University of Groningen; Xiong, Junlin, University of Science and Technology of China</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>FrC08.4</td>
<td>Model Reduction for Linear Parameter-Varying Systems through Parameter Projection</td>
<td>Schouten, Sil, Eindhoven University of Technology; Lou, Daming, Eindhoven University of Technology</td>
</tr>
<tr>
<td>17:50-18:10</td>
<td>FrC08.5</td>
<td>Balanced Truncation for a Special Class of Bilinear Descriptor Systems</td>
<td>Pontes Duff Pereira, Igor, Max Planck Institute for Dynamics of Complex Technical Systems; Goyal, Pawan, Max Planck Institute; Benner, Peter, Max Planck Institute for Dynamics of Complex Technical Systems</td>
</tr>
<tr>
<td>18:10-18:30</td>
<td>FrC08.6</td>
<td>A Two-Sided Iterative Framework for Model Reduction of Linear Systems with Quadratic Output</td>
<td>Gosea, Ion Victor, Max Planck Institute for Dynamics of Complex Technical Systems; Antoulas, Athanasios C., Rice University</td>
</tr>
<tr>
<td>16:30-16:50</td>
<td>FrC09.1</td>
<td>Sensor Networks (Regular Session)</td>
<td>Chair: Sundaram, Shreyas, Purdue University; Co-Chair: Tron, Roberto, Boston University</td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>FrC09.2</td>
<td>Distributed State Estimation under Denial of Service</td>
<td>Battistelli, Giorgio, University of Firenze; Chisci, Luigi, University of Firenze; Selvi, Daniela, University of Firenze; Tesi, Pietro, University of Firenze</td>
</tr>
<tr>
<td>17:10-17:30</td>
<td>FrC09.3</td>
<td>Optimal Kalman Consensus Filter for Weighted Directed Graphs</td>
<td>Khan, Shiraz, Purdue University; Deshmukh, Raj, Purdue University; Hwang, Inseok, Purdue University</td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>FrC09.4</td>
<td>Coverage Control and Distributed Consensus-Based Estimation for Mobile Sensing Networks in Complex Environments</td>
<td>Bolder, Manuel, University of Trento; Fontanelli, Daniele, University of Trento; Palopoli, Luigi, University of Trento</td>
</tr>
<tr>
<td>17:50-18:10</td>
<td>FrC09.5</td>
<td>Sensor Selection for Hypothesis Testing: Complexity and Greedy Algorithms</td>
<td>Ye, Lintao, Purdue University; Sundaram, Shreyas, Purdue University</td>
</tr>
<tr>
<td>18:10-18:30</td>
<td>FrC09.6</td>
<td>Hypothesis Assignment and Partial Likelihood Averaging for Cooperative Estimation</td>
<td>Yuan, Li, Purdue University; Byl, Katie, Imperial College London; Bellegarda, Guillaume, University of California, Santa Barbara; Reger, Johann, TU Ilmenau; Cieza, Oscar, TU Ilmenau</td>
</tr>
<tr>
<td>FrC10</td>
<td>Sliding-Mode Control III (Regular Session)</td>
<td>Méditerranée C12</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Chair</td>
<td>Ferrara, Antonella</td>
<td>University of Pavia</td>
<td></td>
</tr>
<tr>
<td>Co-Chair</td>
<td>Hsu, Liu</td>
<td>COPPE/UFRJ</td>
<td></td>
</tr>
<tr>
<td>Keijock, Timon</td>
<td>COPPE/UFRJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunes, Eduardo Vieira Leao</td>
<td>COPPE - Federal University of Rio de Janeiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsu, Liu</td>
<td>COPPE/UFRJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:50-17:10</td>
<td>FrC10.2</td>
<td>Integral Second-Order Sliding Modes for Robust Prescribed-Time Leader-Follower Consensus Control with Partial Information, pp. 7863-7868.</td>
<td></td>
</tr>
<tr>
<td>Ferrara, Antonella</td>
<td>University of Pavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambelli, Massimo</td>
<td>University of Pavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obeid, Hussein</td>
<td>Université de Technologie de Belfort-Montbéliard (UTBM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laghouache, Salah</td>
<td>Université de Technologie de Belfort-Montbéliard (UTBM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fridman, Leonid</td>
<td>Universidad Nacional Autonoma de Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-17:50</td>
<td>FrC10.4</td>
<td>Smooth Robust Control Applied to Quadrotor Landing, pp. 7875-7880.</td>
<td></td>
</tr>
<tr>
<td>Peixoto, Alessandro Jacoud</td>
<td>Federal University of Rio de Janeiro (UFRJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pereira-Dias, Diego</td>
<td>Federal University of Rio de Janeiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrade, Ricardo</td>
<td>Federal University of Rio de Janeiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:50-18:10</td>
<td>FrC10.5</td>
<td>Spatially Distributed Networked Sliding Mode Control, pp. 7881-7886.</td>
<td></td>
</tr>
<tr>
<td>Ludwig, Jakob</td>
<td>Graz University of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinberger, Martin</td>
<td>Graz University of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn, Martin</td>
<td>Graz University of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mancini, Mauro</td>
<td>Politecnico di Torino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blouze, Nicoletta</td>
<td>Politecnico di Torino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capello, Elisa</td>
<td>Politecnico di Torino, CNR-IEIIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punta, Elisabetta</td>
<td>CNR-IEIIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30-19:00</td>
<td>FrC10.7</td>
<td>Time Leader-Follower Consensus Control with Partial Integral Second-Order Sliding Modes for Robust Prescribed-Path Tracking, pp. 7893-7898.</td>
<td></td>
</tr>
<tr>
<td>Hsu, Liu</td>
<td>COPPE/UFRJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keijock, Timon</td>
<td>COPPE/UFRJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nunes, Eduardo Vieira Leao</td>
<td>COPPE - Federal University of Rio de Janeiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsu, Liu</td>
<td>COPPE/UFRJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30-20:00</td>
<td>FrC10.9</td>
<td>Integral Second-Order Sliding Modes for Robust Prescribed-Time Leader-Follower Consensus Control with Partial Information, pp. 7905-7910.</td>
<td></td>
</tr>
<tr>
<td>Ferrara, Antonella</td>
<td>University of Pavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambelli, Massimo</td>
<td>University of Pavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obeid, Hussein</td>
<td>Université de Technologie de Belfort-Montbéliard (UTBM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laghouache, Salah</td>
<td>Université de Technologie de Belfort-Montbéliard (UTBM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fridman, Leonid</td>
<td>Universidad Nacional Autonoma de Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Robustness to Incorrect Models in Average-Cost Optimal

Stochastic Control, pp. 7970-7975.
Kara, Ali Devran Queen's University
Raginsky, Maxim University of Illinois, Urbana
Champaign
Yuksel, Serdar Queen's University

Optimization-Based Approaches for Affine Abstraction and Model Discrimination of Uncertain Nonlinear Systems, pp. 7976-7981.
Jin, Zeyuan Arizona State University
Shen, Qiang Arizona State University
Yong, Sze Zheng Arizona State University

Balance in the Loop Via Nonstandard Anti-Windup

Hysteresis Nonlinearities

Model Discrimination of Uncertain Nonlinear Systems

Optimization-Based Approaches for Affine Abstraction and Model Discrimination of Uncertain Nonlinear Systems, pp. 7967-7981.

Robust Hybrid Output Regulation for Linear Systems with Periodic Jumps: The Non-Semiclassical Case, pp. 7982-7987.
de Carolis, Giovanni University of Rome, Tor Vergata
Galeani, Sergio University of Rome, Tor Vergata
Sassano, Mario University of Rome, Tor Vergata

On the Analytic Center Cutting Plane Method for the Discrete-Time Integral Quadratic Constraint Problem, pp. 7988-7993.
Abou Jaoude, Dany American University of Beirut
Palframan, Mark Virginia Tech
Farhood, Mazen Virginia Tech

Active Perception and Control from Temporal Logic Specifications, pp. 7994-7999.
Rodrigues da Silva, Rafael University of Notre Dame
Kurtz, Vincent University of Notre Dame
Lin, Hai University of Notre Dame

FrC14

Stability of Nonlinear Systems III (Regular Session)
Chair: Fromion, Vincent INRA
Co-Chair: Reveryer, Paul University of Arizona

Fisher, Michael W University of Michigan
Hiskens, Ian University of Michigan

FrC14.2 A Data Driven Vector Field Oscillator with Arbitrary Limit Cycle Shape, pp. 8007-8012.
Pasandi, Venus Isfahan University of Technology
Dinale, Aiko Istituto Italiano Di Tecnologia
Keshmiri, Mahdi Isfahan University of Technology
Pucci, Daniele Istituto Italiano Di Tecnologia

FrC14.3 A Sufficient Condition for the Almost Global Stability of Nonlinear Switched Systems with Average Dwell Time, pp. 8013-8017.
Ilhan, Ferruh Istanbul Technical University
Karabacak, Ozkan Aalborg University
Wisniewski, Rafal Aalborg University
17:30-17:50 FrC14.4
On L2, the Set of Lipschitz Continuous Operators Is a Set of First Category in the Set of Uniformly Continuous Operators, pp. 8018-8023.
Fromion, Vincent INRA
Scorletti, Gerard Ecole Centrale de Lyon

17:50-18:10 FrC14.5
de Figueiredo Barroso, Nelson INRIA Lille/University of Lille
Ushirobira, Rosane INRIA
Efimov, Denis INRIA

18:10-18:30 FrC14.6
Two Paths to Finding the Pitchfork Bifurcation in Motivation Dynamics, pp. 8030-8035.
Reverdy, Paul University of Arizona

FrC15 Rhodes GH
Geometric Methods (Regular Session)
Chair: Maschke, Bernhard University Claude Bernard of Lyon
Co-Chair: Gray, W. Steven Old Dominion University
16:30-16:50 FrC15.1
Flat Outputs in Terms of SISO Operator Compositions, pp. 8036-8041.
Gray, W. Steven Old Dominion University

16:50-17:10 FrC15.2
B-Spline Generalized Hold for Nonlinear Sampled-Data Systems, pp. 8042-8047.
Sanchez, Claudia Universidad Tecnica Federico Santa Maria
Yuz, Juan I. Universidad Tecnica Federico Santa Maria

17:10-17:30 FrC15.3
Realization Theory of Recurrent Neural Networks and Rational Systems, pp. 8048-8053.
Defourneau, Thibault Université de Lille
Petreczky, Mihaly UMR CNRS 9189, Ecole Centrale de Lille

17:30-17:50 FrC15.4
On the Generation of Virtual Holonomic Constraints for Mechanical Systems with Underactuation Degree One, pp. 8054-8060.
Olsason, Rein Dylan University of Toronto
Maggiore, Manfredi University of Toronto

17:50-18:10 FrC15.5
Necessary and Sufficient LMI Conditions for Constraints Satisfaction within a B-Spline Framework, pp. 8061-8066.
Prodan, Ionela Grenoble Institute of Technology (Grenoble INP) - Eisaar
Stoican, Florin UPB (Politehnica University of Bucharest)
Louembet, Christophe LAAS-CNRS

18:10-18:30 FrC15.6
Port-Thermodynamic Systems and the Assignment of Their Structure by Feedback, pp. 8067-8072.
Maschke, Bernhard University Claude Bernard of Lyon
van der Schaft, Arjan University of Groningen

FrC16 Rhodes AB
Numerical Algorithms (Regular Session)
Chair: Arcak, Murat University of California, Berkeley
Co-Chair: Tsachouridis, Vassilios A. United Technologies Research Centre Ireland, Ltd

16:30-16:50 FrC16.1
Tsachouridis, Vassilios A. United Technologies Research Centre Ireland, Ltd
Giantamidis, Georgios United Technologies Research Centre Ireland, Ltd

16:50-17:10 FrC16.2
Sharma, Harsh Virginia Polytechnic Institute and State University
Patil, Mayuresh J. Virginia Tech
Woolsey, Craig Virginia Tech

17:10-17:30 FrC16.3
Zanelli, Andrea University of Freiburg
Tran-Dinh, Quoc University of North Carolina, Chapel Hill
Diehl, Moritz University of Freiburg

17:30-17:50 FrC16.4
Smith, Stanley W. University of California, Berkeley
Yin, He University of California, Berkeley
Arcak, Murat University of California, Berkeley

17:50-18:10 FrC16.5
Asymptotic Optimality of a Time Optimal Path Parametrization Algorithm, pp. 8099-8105.
Spasojevic, Igor MIT
Murali, Varun MIT
Karaman, Sertac Massachusetts Institute of Technology

18:10-18:30 FrC16.6
Boddupalli, Nibodh University of California Santa Barbara
Hasnain, Aqib UCSB
Yeung, Enoch University of California Santa Barbara
Nandanoori, Sai Pushpak Iowa State University

FrC17 Rhodes CD
Power Electronics (Regular Session)
Chair: Dörfler, Florian Swiss Federal Institute of Technology (ETH) Zurich
Co-Chair: Oliveira, Vilma A. Universidade de Sao Paulo

16:30-16:50 FrC17.1
Stabilizing Set and Phase Margin Computation for Resonant
Controllers, pp. 8112-8117.
Magossi, Rafael
University of São Paulo
Oliveira, Vilma A.
Universidade de Sao Paulo
Machado, Ricardo Quadros
University of São Paulo
Bhattacharyya, Shankar P.
Texas A & M Univ
16:50-17:10 FrC17.2
Current Sensorless Control of Bidirectional Converters under Mixed Conduction Mode, pp. 8118-8123.
Lin, Jun
Tel Aviv University
Weiss, George
Tel Aviv University
17:10-17:30 FrC17.3
Robust Relay Control for Buck Converters: Experimental Application, pp. 8124-8129.
Delpoux, Romain
INSA Lyon
Hetel, Laurentiu
CNRS
Kruszewski, Alexandre
Ecole Centrale de Lille
Tregouet, Jean-Francois
Ampère Laboratory / INSA-Lyon
Lin Shi, Xuefang
INSA Lyon
17:30-17:50 FrC17.4
Huang, Linbin
Zhejiang University
Coulson, Jeremy
ETH Zürich
Lygeros, John
ETH Zürich
Dörfler, Florian
ETH Zürich
17:50-18:10 FrC17.5
Stability Analysis of a Parallel-Converter System with Master/Slave Configuration, pp. 8136-8141.
Yan, Jiaqi
Nanyang Technological University, Singapore
Qi, Yang
Nanyang Technological University, Singapore
18:10-18:30 FrC17.6
Distributed Adaptive HVAC Control for Multi-Zone Buildings, pp. 8142-8147.
Lymperopoulos, Georgios
University of Southern California
Ioannou, Petros A.
University of Southern California
19:00-19:25 FrC17.7
Stability of Hybrid and Nonlinear Systems (Regular Session)
Chair: Phillips, Sean
Air Force Research Laboratory
Co-Chair: Braun, Philipp
University of Newcastle
16:30-16:50 FrC18.1
Almost Everywhere Conditions for Hybrid Lipschitz Lyapunov Functions, pp. 8148-8153.
Della Rossa, Matteo
LAAS CNRS
Goebel, Rafael
Loyola University Chicago
Tanwani, Aneel
LAAS - CNRS
Zaccarian, Luca
LAAS-CNRS and University of Trento
16:50-17:10 FrC18.2
Uniting Control Laws: On Obstacle Avoidance and Global Stabilization of Underactuated Linear Systems, pp. 8154-8159.
Braun, Philipp
University of Newcastle
Kellett, Christopher M.
University of Newcastle
17:10-17:30 FrC18.3
Observer-Based Synchronization of Multi-Agent Systems Using Intermittent Output Measurements, pp. 8160-8165.
Phillips, Sean
Air Force Research Laboratory
Sanfelice, Ricardo G.
University of California, Santa Cruz
17:30-17:50 FrC18.4
Linear Complementarity Systems and Cone-Copositive Lyapunov Stability, pp. 8166-8171.
Iannelli, Luigi
University of Sannio
Iervolino, Raffaele
University of Napoli Federico II
Vasca, Francesco
University of Sannio
17:50-18:10 FrC18.5
Broering Groff, Leonardo
Universidade FederaldoRio GrandedoSul (UFRGS)
Valmorbida, Giorgio
L2S, CentraleSupelec
Gomes da Silva Jr, Joao
Universidade FederaldoRio GrandedoSul (UFRGS)
18:10-18:30 FrC18.6
Length and Mean Value Theorem in Norm Are the Flip Sides of the Same Coin, pp. 8178-8183.
Fromion, Vincent
INRA
Scorletti, Gerard
Ecole Centrale De Lyon
19:00-19:25 FrC18.7
Stochastic Optimal Control III (Regular Session)
Chair: Charalambous, Charalambsos D.
University of Cyprus
Co-Chair: Pavon, Michele
University of Padova
16:30-16:50 FrC19.1
Series Solution of Stochastic HJB Equations, pp. 8184-8189.
Krener, Arthur J
Naval Postgraduate School
16:50-17:10 FrC19.2
Generalizations of Nonanticipative Rate Distortion Function to Multivariate Nonstationary Gaussian Autoregressive Processes, pp. 8190-8195.
Charalambos, Charalambsos D.
University of Cyprus
Kourtellaris, Christos
University of Cyprus
Charalambos, Themistoklis
Aalto University
van Schuppen, Jan H.
Van Schuppen Control Research
17:10-17:30 FrC19.3
Tsukamoto, Hiroyasu
California Institute of Technology
Chung, Soon-Jo
California Institute of Technology
17:30-17:50 FrC19.4
Covariance Steering in Zero-Sum Linear-Quadratic Two-Player Differential Games, pp. 8204-8209.
Chen, Yongxin
Georgia Institute of Technology
Georgiou, Tryphon T.
University of California, Irvine
Pavon, Michele
University of Padova
158
17:50-18:10 FrC19.5

Linear Quadratic Mean Field Social Optimization: Asymptotic Solvability, pp. 8210-8215.

Huang, Minyi
Carleton University

Yang, Xuwei
Carleton University

18:10-18:30 FrC19.6

Pakniyat, Ali
Georgia Institute of Technology

Vasudevan, Ramanarayan
University of Michigan

16:30-16:50 FrC20.1

Gihluy, Barry James
University of Waterloo

Smith, Stephen L.
University of Waterloo

16:50-17:10 FrC20.2

Formation Control in a Leader-Fixed Frame for Agents with Extended Unicycle Dynamics That Include Orientation Kinematics on SO(m), pp. 8230-8235.

Heintz, Christopher
University of Kentucky

Hoagg, Jesse B.
University of Kentucky

17:10-17:30 FrC20.3

Leader-Following Formation Control in a Rotating Frame for Agents with Double Integrator Dynamics: Generalized Stability Results and Experiments, pp. 8236-8241.

Lippay, Zachary
University of Kentucky

Hoagg, Jesse B.
University of Kentucky

17:30-17:50 FrC20.4

An Adaptive Optimal Control Modification with Input Uncertainty for Unknown Heterogeneous Agents Synchronization, pp. 8242-8247.

Arevalo-Castiblanco, Miguel Felipe
Universidad Nacional de Colombia

Tellez-Castro, Duvan Andres
Universidad Nacional de Colombia

Cardona, Gustavo Andres
Universidad Nacional de Colombia

Mojica-Nava, Eduardo
National University of Colombia

17:50-18:10 FrC20.5

Necessary Conditions and Sufficient Conditions for Finding a Common Fixed Point of a Family of Maps Using a Distributed Algorithm, pp. 8248-8253.

Fullmer, Daniel
Yale University

Liu, Ji
Stony Brook University

Morse, A. Stephen
Yale University

18:10-18:30 FrC20.6

Kashyap, Mruganka
University of Wisconsin-Madison

Lessard, Laurent
University of Wisconsin-Madison

17:50-18:10 FrC21

Networked Control Systems VI (Regular Session)

Chair: Díaz-Mercado, Yancy
University of Maryland

Co-Chair: Schenato, Luca
University of Padova

16:30-16:50 FrC21.1

Imran, Imil Hamda
University of Newcastle

Chen, Zhiyong
University of Newcastle

Yan, Yamin
University of Newcastle

Fu, Minyue
University of Newcastle

16:50-17:10 FrC21.2

MinMax Mean-Field Team Approach for a Leader-Follower Network: A Saddle-Point Strategy, pp. 8266-8271.

Baharloo, Mohammad Mahdi
Concordia University

Arabneydi, Jalal
McGill University

Aghdam, Amir G.
Concordia University

17:10-17:30 FrC21.3

Barforooshan, Mohsen
Aalborg University

Nagahara, Masaaki
University of Kitakyushu

Ostergaard, Jan
Aalborg University

17:30-17:50 FrC21.4

Sparsity Structure and Optimality of Multi-Robot Coverage Control, pp. 8278-8283.

Davydov, Alexander
University of Maryland, College Park

Díaz-Mercado, Yancy
University of Maryland

17:50-18:10 FrC21.5

Maass, Alejandro I.
University of Melbourne

Nesic, Dragan
University of Melbourne

18:10-18:30 FrC21.6

Pezzutto, Matthias
University of Padova

Schenato, Luca
University of Padova

Garone, Emanuele
Université Libre de Bruxelles

16:30-16:50 FrC22

Maritime Control and Autonomous Vehicles (Regular Session)

Chair: Enqvist, Martin
Linköping University

Co-Chair: Daher, Naseem
American University of Beirut

17:50-18:10 FrC22.1

Kennedy, Justin Matthew
Queensland University of Technology (QUT)

Donaire, Alejandro
University of Newcastle

Ford, Jason
Queensland University of Technology

Valentinis, Francis
Defence Science and Technology Group
Streamline-Based Control of Underwater Gliders in 3D Environments, pp. 8303-8310.
To, Kwn Yiu Cadmus University of Technology Sydney
Lee, James Ju Heon University of Technology Sydney
Yoo, Chanyeol University of Technology Sydney
Anstee, Stuart Defence Science and Technology Group
Fitch, Robert Charles University of Technology Sydney

17:10-17:30 FrC22.3
Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles, pp. 8311-8316.
Heshmati-alamdari, Shahab KTH Royal Institute of Technology
Nikou, Alexandros KTH Royal Institute of Technology
Dimarogonas, Dimos V. KTH Royal Institute of Technology

17:30-17:50 FrC22.4
Obtaining Consistent Parameter Estimators for Second-Order Modulus Models, pp. 8317-8322.
Ljungberg, Fredrik Linköping University
Enqvist, Martin Linköping University

17:50-18:10 FrC22.5
An Energy Optimal Path-Planning Scheme for Quadcopters in Forests, pp. 8323-8328.
Aoun, Christoph American University of Beirut
Daheer, Naseem American University of Beirut
Shammas, Elie American University of Beirut

18:10-18:30 FrC22.6
Nonhoff, Marko Leibniz University Hannover
Köhler, Philipp N. University of Stuttgart
Kohl, Anna NTNU
Petersen, Kristin Y. Norwegian University of Science and Technology (NTNU)
Allgöwer, Frank University of Stuttgart

Large-Scale Distributed Optimization and Decentralized Control II (Invited Session)
Chair: Uribe, Cesar Massachusetts Institute of Technology
Co-Chair: Nedich, Angelia Arizona State University
Organizer: Uribe, Cesar Massachusetts Institute of Technology
Organizer: Nedich, Angelia Arizona State University
Organizer: Olshevsky, Alexander Boston University

16:30-16:50 FrC23.1
Multi-Layer Disease Spread Model with a Water Distribution Network, pp. 8335-8340.
Pare, Philip E. KTH Royal Institute of Technology
Liu, Ji Stony Brook University
Sandberg, Henrik KTH Royal Institute of Technology
Johansson, Karl H. KTH Royal Institute of Technology

16:50-17:10 FrC23.2
Uribe, Cesar Massachusetts Institute of Technology
Wai, Hoi-To The Chinese University of Hong Kong
Alizadeh, Mahnoosh University of California Santa Barbara

17:10-17:30 FrC23.3
A Communication-Efficient Algorithm for Exponentially Fast Non-Bayesian Learning in Networks (I), pp. 8347-8352.
Mitra, Anirtra Purdue University
Richards, John A. Sandia National Laboratories
Sundaram, Shreyas Purdue University

17:30-17:50 FrC23.4
Distributed Stochastic Optimization with Gradient Tracking Over Strongly-Connected Networks (I), pp. 8353-8358.
Xin, Ran Carnegie Mellon University
Sahu, Anik Kumar Bosch Center for Artificial Intelligence
Khan, Usman A. Tufts University
Kar, Soummya Carnegie Mellon University

17:50-18:10 FrC23.5
Optimal and Approximate Solutions to Linear Quadratic Regulation of a Class of Graphon Dynamical Systems, pp. 8359-8365.
Gao, Shuang McGill University
Caines, Peter E. McGill University

18:10-18:30 FrC23.6
A Communication-Based Distributed Model Predictive Control Approach for Large-Scale Systems, pp. 8366-8371.
Segovia, Pau Universitat Politècnica de Catalunya (UPC)
Lala, Rajaoarisoa Mines Douai
Nejari, Fatiha Universitat Politècnica de Catalunya
Duvieila, Eric IMT Lille Douai
Puig, Vicenc Universitat Politècnica de Catalunya

FrC24 Hermès
PID Control (Regular Session)
Chair: Bazanela, Alexandre S. Univ. Federal do Rio Grande do Sul
Co-Chair: Rodrigues, Luis Concordia University

16:30-16:50 FrC24.1
PID Control of Biochemical Reaction Networks, pp. 8372-8379.
Whitby, Max Alexander Oxford University
Cardelli, Luca Microsoft Research
Laurenti, Luca University of Oxford
Tribastone, Mirco IMT Institute for Advanced Studies
Tschaikowski, Max TU Wien
Kwiatkowska, Marta University of Oxford

16:50-17:10 FrC24.2
Kumar, Mahendra Indian Institute of Technology,
Extension of the Correlation-Based Tuning Method for Load Disturbance Rejection, pp. 8386-8391.

- da Silva, Roger Willian P. Universidade Federal do Rio Grande do Sul
- Eckhard, Diego Universidade Federal do Rio Grande do Sul

Extraction of Informative Subsets from Routine Operating Data for Use in Data-Driven Control, pp. 8392-8397.

- Garcia, Cristiane Universidade Federal do Rio Grande do Sul
- Bazanella, Alexandre S. Universidade Federal do Rio Grande do Sul

Multivariable PID Synthesis Via a Static Output Feedback LMI, pp. 8398-8403.

- Carvalho, Bruno Concordia University
- Rodrigues, Luis Concordia University

- Zhang, Jinke Academy of Mathematics and Systems Science, Chinese Academy of Sciences
- Guo, Lei Academy of Mathematics and Systems Science, Chinese Academy of Sciences

A Market for Retail Electric Provider Based Demand Response, pp. 8429-8434.

- Xia, Bainan Texas A&M University
- Lee, Ki-Yeob Texas A&M University
- Shakkottai, Srinivas Texas A&M University
- Kalathil, Dileep Texas A&M University

Robust Passivity-Based Control of Boost Converters in DC Microgrids, pp. 8435-8440.

- Cucuzzella, Michele University of Groningen
- Lazzari, Riccardo Department of Power Generation Technologies and Materials, RSES
- Kawano, Yu Hiroshima University
- Kosaraju, Krishna Chaitanya University of Groningen
- Scherpen, Jacquilien M.A. University of Groningen

- Cavraro, Guido National Renewable Energy Laboratory
- Bernstein, Andrey National Renewable Energy Laboratory
- Keckatos, Vassilis Virginia Tech
- Zhang, Yingchen National Renewable Energy Laboratory
AUTHOR INDEX
CDC 2019 Author Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Fr</th>
<th>We</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahan, Ferrahe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdi, Sienna A.</td>
<td>FrA14.1</td>
<td></td>
</tr>
<tr>
<td>Abghahmadi, Ali-akbar</td>
<td>FrA17.6</td>
<td></td>
</tr>
<tr>
<td>Aghapour, Elah e</td>
<td>FrC11.5</td>
<td></td>
</tr>
<tr>
<td>Aghdam, Amir G.</td>
<td>FrC21.2</td>
<td></td>
</tr>
<tr>
<td>Agrawal, Deepak Kumar</td>
<td>ThA01.3</td>
<td></td>
</tr>
<tr>
<td>Ahlend, Anders</td>
<td>ThB21.1</td>
<td></td>
</tr>
<tr>
<td>Ahmadi, Mohammadreza</td>
<td>ThC03.4</td>
<td></td>
</tr>
<tr>
<td>Ahmadi, Salman</td>
<td>ThA22.2</td>
<td></td>
</tr>
<tr>
<td>Ahmed-Al, Tarek</td>
<td>WeA18.1</td>
<td></td>
</tr>
<tr>
<td>Ahm, Kyuree</td>
<td>WeA04.5</td>
<td></td>
</tr>
<tr>
<td>Ahn, Sejoon</td>
<td>ThC07.3</td>
<td></td>
</tr>
<tr>
<td>Ahmitioae, Tutor-Bogdan</td>
<td>WeA03.2</td>
<td></td>
</tr>
<tr>
<td>Ait Oufrouch, Naima</td>
<td>FrB11.1</td>
<td></td>
</tr>
<tr>
<td>Ajorlo, Amir</td>
<td>ThC09.3</td>
<td></td>
</tr>
<tr>
<td>Aijd, Syed Ali</td>
<td>ThB20.6</td>
<td></td>
</tr>
<tr>
<td>Akbazrudeh, Nima</td>
<td>FrB19.6</td>
<td></td>
</tr>
<tr>
<td>Akian, Marianne</td>
<td>ThA15.3</td>
<td></td>
</tr>
<tr>
<td>Akopian, David</td>
<td>ThA11.4</td>
<td></td>
</tr>
<tr>
<td>Akyol, Emrah</td>
<td>ThA21.4</td>
<td></td>
</tr>
<tr>
<td>Al Janaideh, Mohammad</td>
<td>FrB07.1</td>
<td></td>
</tr>
<tr>
<td>Al Makdah, Abed AlRahman</td>
<td>FrB07.6</td>
<td></td>
</tr>
<tr>
<td>Al Taxi, Mohammad</td>
<td>FrB24.6</td>
<td></td>
</tr>
<tr>
<td>Al Hiaieh, Mohammad I.</td>
<td>FrB07.6</td>
<td></td>
</tr>
<tr>
<td>AL-KHARAZ, Mohammed</td>
<td>ThC02.2</td>
<td></td>
</tr>
<tr>
<td>Alamir, Mazen</td>
<td>FrC03.1</td>
<td></td>
</tr>
<tr>
<td>Alamo, Teodoro</td>
<td>WeA05.2</td>
<td></td>
</tr>
<tr>
<td>Alawar, Amr</td>
<td>ThB06.2</td>
<td></td>
</tr>
<tr>
<td>Alazrad, Daniel</td>
<td>FrB08.1</td>
<td></td>
</tr>
<tr>
<td>Albea Sanchez, Carolina</td>
<td>WeC17.3</td>
<td></td>
</tr>
<tr>
<td>Albrect, Sebastian</td>
<td>ThC16.6</td>
<td></td>
</tr>
<tr>
<td>Aleksandrov, Alexander</td>
<td>FrA14.6</td>
<td></td>
</tr>
<tr>
<td>Alemzadeh, Siavash</td>
<td>ThC23.3</td>
<td></td>
</tr>
<tr>
<td>Alessandi, Angelo</td>
<td>WeC06.3</td>
<td></td>
</tr>
<tr>
<td>Alexander, Andreea B.</td>
<td>FrB17</td>
<td>CC</td>
</tr>
<tr>
<td>Alghunaim, Sulaiman A.</td>
<td>ThC06.2</td>
<td></td>
</tr>
<tr>
<td>Ali Al-Radawi, Muhammad</td>
<td>ThA01.3</td>
<td></td>
</tr>
<tr>
<td>Alimch, Alex Zeynab</td>
<td>ThB24.6</td>
<td></td>
</tr>
<tr>
<td>Alizadeh, Mahnnoosh</td>
<td>ThA01.3</td>
<td></td>
</tr>
<tr>
<td>Aljaberi, Saeed</td>
<td>FrB01.5</td>
<td></td>
</tr>
<tr>
<td>Aljanaideh, Khaled</td>
<td>WeC22</td>
<td>C</td>
</tr>
<tr>
<td>Allen, Brendon C.</td>
<td>WeA02.5</td>
<td></td>
</tr>
<tr>
<td>Allen, Jony</td>
<td>WeA16.5</td>
<td></td>
</tr>
<tr>
<td>Aligwer, Frank</td>
<td>WeA20.4</td>
<td></td>
</tr>
<tr>
<td>Alpago, Daniele</td>
<td>WeC19.1</td>
<td></td>
</tr>
<tr>
<td>Altanfina, Claudio</td>
<td>ThB21</td>
<td></td>
</tr>
<tr>
<td>Ame, Aaron D.</td>
<td>WeB14.8</td>
<td></td>
</tr>
<tr>
<td>Amin, Saurab</td>
<td>ThB18.1</td>
<td></td>
</tr>
<tr>
<td>Amini, Mohammad Reza</td>
<td>FrB03.5</td>
<td></td>
</tr>
<tr>
<td>Amini, Nina H.</td>
<td>WeC12.3</td>
<td></td>
</tr>
<tr>
<td>Aminzare, Zahra</td>
<td>ThC01.4</td>
<td></td>
</tr>
<tr>
<td>Ammeh, Leilha</td>
<td>WeA18.1</td>
<td></td>
</tr>
<tr>
<td>Amokrane, Fawzia</td>
<td>WeB18.5</td>
<td></td>
</tr>
<tr>
<td>Andan, Mathani</td>
<td>ThB17.6</td>
<td></td>
</tr>
<tr>
<td>Amananou, Bouchra</td>
<td>ThB22.4</td>
<td></td>
</tr>
<tr>
<td>Anastasopoulos, Achilles</td>
<td>FrA09.5</td>
<td></td>
</tr>
<tr>
<td>Andersen, Tom Stian</td>
<td>ThA03.3</td>
<td></td>
</tr>
<tr>
<td>Andersson, Brian D.O.</td>
<td>WeA11.2</td>
<td></td>
</tr>
<tr>
<td>Anderson, James</td>
<td>ThC15</td>
<td>C</td>
</tr>
<tr>
<td>Anderson, Sean</td>
<td>FrA16.6</td>
<td></td>
</tr>
<tr>
<td>Anderson, Carl</td>
<td>ThA24.4</td>
<td></td>
</tr>
<tr>
<td>Anderson, Sean B.</td>
<td>ThB15.3</td>
<td></td>
</tr>
<tr>
<td>Andrade, Ricardo</td>
<td>FrC01.4</td>
<td></td>
</tr>
<tr>
<td>Andrien, Alex Rudolf Petrus</td>
<td>FrA11.4</td>
<td></td>
</tr>
</tbody>
</table>

2163
Bobrov, Alexey ... WeA18.6 648
Boche, Holger ... FrC06.2 7714
Bodduapalli, Nibodh ... WeA01.4 19
... FrC16.6 8106
Boem, Francesca... ThC25.4 5623
Boiroux, Dimitri .. ThB01.3 3762
... FrB11.4 6983
Boldrer, Manuel .. FrC09.4 7838
Bolender, Michael .. ThB23.1 4563
Bombox, Xavier .. WeB22.3 1734
Bonargent, Tristan .. WeA18.3 629
... WeA22.5 791
Bonilla, Moises E. ... ThB12.3 4166
Bonilla Licea, Daniel ThB12.3 4166
Bonnard, Bernard ... WeA15.1 505
Bonnet, Catherine ... WeB02 C
... WeB02.1 971
Boots, Byron .. ThC07.1 1148
Bopardikar, Shaunak D. ThC03 CC
... ThC03.5 4804
... FrA03.3 5729
... FrB09.6 6924
Borggaard, Jeff .. WeC08.4 2157
Borisov, Andrey ... WeA21.1 728
... WeC19.6 2586
Borja, Pablo ... FrB14.4 7093
Borkar, Vivek S. ... ThB15.6 4298
Borrelli, Francesco ... WeB10.5 1383
... WeC10.6 2245
... WeC23.2 2702
Borri, Alessandro .. FrC01.3 7542
Bortoff, Scott A. ... ThA05.1 2952
Boscain, Ugo V ... WeC12.1 2292
Bosche, Jerome ... WeA17.6 611
Bosov, Alexey ... WeA21.1 728
... WeC19.6 2586
Bosso, Alessandro ... WeB03.6 1031
... WeC05.3 2039
BOTTEGA, Giulio ... ThC22.1 5494
Bou Saba, David ... ThC08.6 4996
Boudaoud, Mokrane .. FrB07 CC
... FrB07 O
... FrB07.6 6851
Bouffanais, Roland ... FrC05.3 7683
Boukili, Bensalem .. ThC25.9 5629
Boukouvias, Alexis ... WeC24.2 2738
boumhid, Ismail ... ThC28.5 5629
Bourdais, Romain ... FrA20.6 6392
Boussadaa, Islam .. WeB02.2 971
Boussaid, Nabil .. WeC12.5 2316
... ThC08.2 4971
Braberman, Victor ... WeB04.6 1068
Bradford, Eric .. ThC02.3 4747
Bradley, Justin ... WeA06 CC
... WeA06.3 193
Braga, Marcio F. .. FrB13.6 7069
Brahma, Sarnadul ... ThB19.6 4446
Braksmaier, Maor .. FrA21.4 6418
Brantford, Edward .. WeC22.2 2666
Braun, Daniel .. ThA24.5 3677
Braun, Philipp .. FrC18 CC
... FrC18.2 8154
Bregman, Sander Christian WeA20.2 698
Breschi, Valentina ... WeB17.1 1532
Bribiesca Argomedo, Federico ThC08.1 4964
... ThC08.6 4996
Brivadis, Lucas .. ThA18.1 3435
Bro, Viktor ... FrA01.1 5641
Broering Groff, Leonardo WeA05.5 169
... FrC18.5 8172
Bronnenmeyer, Thilo ThC05.3 4865
Bronstein, Eli ... WeB23.1 1758
Brown, Lindsey S. ... WeC01.2 1881
Brown, Philip N. ... WeC09 CC
... WeC09.1 2175
Brüggemann, Sven ... ThC09.2 5008
Brugnoli, Andrea ... FrB08.1 6857
... FrB08.5 6881
Brugnoli, Mateus Mussi WeB07.5 1171
Bruhns Bastos, Matheus FrA07.4 5888
Brunton, Steven L .. FrB22.3 7389
Budgett, David M .. FrA01.2 5647
Bughlani Armino, Luca WeC23.5 2720
Bujorianu, Luminita Manuela ThB19.4 4433
Burdick, Joel W ... ThC03.4 4797
Burt, Daniel ... ThC16.3 5279
Burke, Declan ... WeA21.3 740
Burton, Laurent ... WeA05.3 157
... FrB12.3 7013
Burnwal, Shantanu Prasad FrA23.3 6487
Bushnell, Linda ... WeA16.5 567
... WeB25.2 1842
Busic, Ana ... ThB13.2 4195
... ThB13.4 4208
Bursoniu, Lucian ... WeA14.6 487
... ThA17.2 3405
Byl, Katie ... FrC07.6 7776

Cabannes, Theophile WeC10.1 2214
Cacace, Filippo ... WeA19.4 672
... FrA12.4 6074
Cahyono, Rully .. WeB04.5 1062
Cai, Kai ... FrB20 C
... FrB20.1 7301
... FrC04 O
... FrC22.1 7635
Cai, Karen ... WeC25.4 2788
CAI, MINGYU .. ThC21.1 5456
Caillau, Jean-Baptiste WeA01.6 31
... WeA15.3 517
... WeC15.1 2405
Caines, Peter E. ... WeA09.1 286
... WeA09.3 299
... WeB19.2 1615
... ThC10.6 5068
... FrC23.6 8359
Calafiore, Giuseppe C. WeA16.1 541
Calderbank, A.R. ... WeC16.3 2455
Calderone, Dan ... WeB11.2 1301
... ThC12.5 5138
Califano, Federico .. FrB06.4 6799
Callaway, Duncan S. ThA13.2 3253
Calliess, Jan-Peter ... FrA22.3 6449
Calvo-Fullana, Miguel FrA23.4 6491
Camacho, Eduardo F WeB05 O
... WeB05.4 1096
Camacho-Solorio, Leobardo ThA08.4 3036
Camisa, Andrea ... FrA20.3 6374
Camilbe, M. Kanat .. ThC22.4 5513
... FrA02.5 5704
CAMMARDELLA, NEIL ThB13.2 4195
Campi, M. C. .. WeB23.3 1772
... FrA13 CC
... FrA13.6 6124
Campos, Victor ... ThC04 C
... ThC04.3 4829
... FrB13.8 7069
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camps, Octavia I.</td>
<td>ThA17.6</td>
<td>3429</td>
</tr>
<tr>
<td>Cannon, Mark</td>
<td>ThB25</td>
<td>CC</td>
</tr>
<tr>
<td>Carnudas de Wit, Carlos</td>
<td>ThB10</td>
<td>CC</td>
</tr>
<tr>
<td>Cao, Ming</td>
<td>WeA07.6</td>
<td>250</td>
</tr>
<tr>
<td>Cao, Guizhou</td>
<td>ThA09.6</td>
<td>3134</td>
</tr>
<tr>
<td>Cao, Xi</td>
<td>FrB24.2</td>
<td>7462</td>
</tr>
<tr>
<td>Capello, Elisa</td>
<td>FrC10.6</td>
<td>7887</td>
</tr>
<tr>
<td>Casadei, Giacomo</td>
<td>WeC06.3</td>
<td>4904</td>
</tr>
<tr>
<td>Carles, Algo</td>
<td>WeC11.2</td>
<td>2259</td>
</tr>
<tr>
<td>Carli, Raffaele</td>
<td>FrA06.6</td>
<td>5862</td>
</tr>
<tr>
<td>Carli, Ruggero</td>
<td>WeC06.4</td>
<td>2084</td>
</tr>
<tr>
<td>Carmel, Claudio</td>
<td>WeC08.5</td>
<td>2163</td>
</tr>
<tr>
<td>Carnavele, Daniele</td>
<td>ThA12</td>
<td>O</td>
</tr>
<tr>
<td>Carravetta, Francesco</td>
<td>FrC01.6</td>
<td>7566</td>
</tr>
<tr>
<td>Carrell, Johnson</td>
<td>WeA19.6</td>
<td>684</td>
</tr>
<tr>
<td>Carre, Elliot</td>
<td>FrB15.4</td>
<td>7128</td>
</tr>
<tr>
<td>Caruso, David</td>
<td>FrC11.6</td>
<td>7923</td>
</tr>
<tr>
<td>Carvalho, Bruno</td>
<td>FrC24.5</td>
<td>8398</td>
</tr>
<tr>
<td>Casagrande, Daniele</td>
<td>WeB06.4</td>
<td>1126</td>
</tr>
<tr>
<td>Casavola, Alessandro</td>
<td>ThA20</td>
<td>CC</td>
</tr>
<tr>
<td>Cas bian, David W.</td>
<td>FrB20.4</td>
<td>7319</td>
</tr>
<tr>
<td>Casini, Marco</td>
<td>ThB13.6</td>
<td>4206</td>
</tr>
<tr>
<td>Cason, Timothy</td>
<td>ThC18.6</td>
<td>5374</td>
</tr>
<tr>
<td>Cassandras, Christos G.</td>
<td>WeA10.2</td>
<td>329</td>
</tr>
<tr>
<td>Cavers, Guido</td>
<td>FrC25.6</td>
<td>8441</td>
</tr>
<tr>
<td>Caverly, Ryan James</td>
<td>FrC02.3</td>
<td>7578</td>
</tr>
<tr>
<td>Cavallaro, Guido</td>
<td>FrC26.5</td>
<td>8441</td>
</tr>
<tr>
<td>Cebulla, Dominik H.</td>
<td>ThC02.4</td>
<td>4755</td>
</tr>
<tr>
<td>Celemin, Carlos</td>
<td>WeA23.1</td>
<td>803</td>
</tr>
<tr>
<td>Centese, Carlo</td>
<td>ThA09.6</td>
<td>3134</td>
</tr>
<tr>
<td>Cerone, Vito</td>
<td>FrB11.2</td>
<td>6971</td>
</tr>
<tr>
<td>Chabane, Mohamed</td>
<td>WeA17.6</td>
<td>431</td>
</tr>
<tr>
<td>Chadli, Mohammed</td>
<td>ThC04</td>
<td>CC</td>
</tr>
<tr>
<td>Chai, Tianyu</td>
<td>ThB05.4</td>
<td>3910</td>
</tr>
<tr>
<td>CHABRA DRAA, Khadija</td>
<td>WeA11.5</td>
<td>385</td>
</tr>
<tr>
<td>Chaillet, Antoine</td>
<td>WeA02.2</td>
<td>43</td>
</tr>
<tr>
<td>Chakrabarty, Ankush</td>
<td>ThA02.4</td>
<td>2862</td>
</tr>
<tr>
<td>Chakrabarty, Aranya</td>
<td>ThB23.4</td>
<td>4583</td>
</tr>
<tr>
<td>Chakrabarty, Debraj</td>
<td>ThA15.5</td>
<td>3346</td>
</tr>
<tr>
<td>Chakrabarty, Manash</td>
<td>FrC02.3</td>
<td>7578</td>
</tr>
<tr>
<td>Chakravorty, Suman</td>
<td>FrB19</td>
<td>CC</td>
</tr>
<tr>
<td>Chamanbazi, Mohammadreza</td>
<td>FrC05.3</td>
<td>7683</td>
</tr>
<tr>
<td>Chambron, Lucid</td>
<td>ThA01.6</td>
<td>2838</td>
</tr>
<tr>
<td>Chambrion, Thomas</td>
<td>WeC12</td>
<td>O</td>
</tr>
<tr>
<td>Chan, Kevin</td>
<td>WeA07.4</td>
<td>1589</td>
</tr>
<tr>
<td>Chander, Jean-philippe</td>
<td>ThA15.1</td>
<td>3334</td>
</tr>
<tr>
<td>Chatterjee, Samrat</td>
<td>FrB13.6</td>
<td>7053</td>
</tr>
<tr>
<td>Chatterjee, Sarthak</td>
<td>ThC01.2</td>
<td>4705</td>
</tr>
<tr>
<td>Chatterjee, Debasis</td>
<td>WeA15.5</td>
<td>529</td>
</tr>
<tr>
<td>Charara, Ali</td>
<td>FrC03.2</td>
<td>7602</td>
</tr>
<tr>
<td>Chatterjee, Samrat</td>
<td>ThB13.6</td>
<td>5217</td>
</tr>
<tr>
<td>Chatterjee, Debasis</td>
<td>WeC13.1</td>
<td>2330</td>
</tr>
<tr>
<td>Chudhuri, Aditya</td>
<td>ThA15.5</td>
<td>3346</td>
</tr>
<tr>
<td>Chaves, Madalena</td>
<td>ThA01</td>
<td>O</td>
</tr>
<tr>
<td>Chen, Anthony Siming</td>
<td>WeB03.2</td>
<td>1007</td>
</tr>
<tr>
<td>Chen, Bin</td>
<td>ThC24.2</td>
<td>5574</td>
</tr>
<tr>
<td>Chen, Fei</td>
<td>ThC03.2</td>
<td>4795</td>
</tr>
<tr>
<td>Chen, Gang</td>
<td>FrA17.4</td>
<td>6269</td>
</tr>
<tr>
<td>Chen, Guanjun</td>
<td>FrA07.2</td>
<td>5874</td>
</tr>
<tr>
<td>Chen, Jianqi</td>
<td>WeA02.4</td>
<td>54</td>
</tr>
<tr>
<td>Chen, Jayin</td>
<td>WeA12.2</td>
<td>401</td>
</tr>
<tr>
<td>Chen, Jie</td>
<td>WeA02.4</td>
<td>54</td>
</tr>
<tr>
<td>Chen, Jiming</td>
<td>FrB21.1</td>
<td>7339</td>
</tr>
<tr>
<td>Chen, Kaimen</td>
<td>WeC03</td>
<td>C</td>
</tr>
<tr>
<td>Chen, Michael Z. Q.</td>
<td>FrC07.2</td>
<td>7752</td>
</tr>
<tr>
<td>Chen, Qixing</td>
<td>WeB07.2</td>
<td>1255</td>
</tr>
<tr>
<td>Chen, Rui</td>
<td>ThC01.2</td>
<td>2220</td>
</tr>
<tr>
<td>Chen, Ruidi</td>
<td>ThA24.1</td>
<td>3655</td>
</tr>
<tr>
<td>Chen, Sen</td>
<td>ThC03.3</td>
<td>4791</td>
</tr>
<tr>
<td>Name</td>
<td>row_number</td>
<td>Name</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Efimov, Denis</td>
<td>WeA01.3</td>
<td>Fang, Wexin</td>
</tr>
<tr>
<td></td>
<td>ThA14.6</td>
<td>Fanti, Maria Pia</td>
</tr>
<tr>
<td></td>
<td>FrA14</td>
<td>Faragasso, Angela</td>
</tr>
<tr>
<td></td>
<td>FrA14.6</td>
<td>Faraut, Gregory</td>
</tr>
<tr>
<td></td>
<td>FrB12.1</td>
<td>Farhood, Mazen</td>
</tr>
<tr>
<td></td>
<td>FrB13</td>
<td>Farnese, Giorgio</td>
</tr>
<tr>
<td></td>
<td>FrB13.3</td>
<td>Fartas, Diego Marcos</td>
</tr>
<tr>
<td></td>
<td>FrB14.5</td>
<td>Farina, Francesco</td>
</tr>
<tr>
<td></td>
<td>FrC14.5</td>
<td>Faut, Jonathan</td>
</tr>
<tr>
<td></td>
<td>FrC07.3</td>
<td>Fawzi, Hamza</td>
</tr>
<tr>
<td></td>
<td>WeB07.1</td>
<td>Fay, Dominik</td>
</tr>
<tr>
<td></td>
<td>ThA07.6</td>
<td>Fazlyab, Mahyar</td>
</tr>
<tr>
<td></td>
<td>ThA15.4</td>
<td>Federico, David</td>
</tr>
<tr>
<td></td>
<td>ThB07.4</td>
<td>Feket, Petro</td>
</tr>
<tr>
<td></td>
<td>ThA17.3</td>
<td>Fekih, Afef</td>
</tr>
<tr>
<td></td>
<td>FrA02.5</td>
<td>Fekom, Mathilde</td>
</tr>
<tr>
<td></td>
<td>FrB09</td>
<td>Felle, Filiberto</td>
</tr>
<tr>
<td></td>
<td>FrB09.1</td>
<td>Feng, Yu</td>
</tr>
<tr>
<td></td>
<td>El AMRAOUI, ADNEN</td>
<td>Fergani, Soheib</td>
</tr>
<tr>
<td></td>
<td>WeB07.2</td>
<td>Ferguson, Bryce L.</td>
</tr>
<tr>
<td></td>
<td>El Chamie, Mahmoud</td>
<td>Ferguson, Joel</td>
</tr>
<tr>
<td></td>
<td>WeA18.1</td>
<td>Feitizbegovic, Mira</td>
</tr>
<tr>
<td></td>
<td>ThA08.1</td>
<td>Feron, Eric</td>
</tr>
<tr>
<td></td>
<td>ThC25.5</td>
<td>Ferragut, Andres</td>
</tr>
<tr>
<td></td>
<td>El Hajjaji, Ahmed</td>
<td>Ferrante, Augusto</td>
</tr>
<tr>
<td></td>
<td>WeA17.6</td>
<td>Ferrante, Francesco</td>
</tr>
<tr>
<td></td>
<td>FrC22</td>
<td>Ferrara, Antonella</td>
</tr>
<tr>
<td></td>
<td>El Amrani, Abderrahim</td>
<td>Ferrara, Antonella</td>
</tr>
<tr>
<td></td>
<td>ThC15.3</td>
<td>Fersini, Saverio</td>
</tr>
<tr>
<td></td>
<td>Engsik-Karup, Allan Peter</td>
<td>Eun, Youngsoo</td>
</tr>
<tr>
<td></td>
<td>ThB15.1</td>
<td>Evangelou, Sinem Andreas</td>
</tr>
<tr>
<td></td>
<td>Enqvist, Martin</td>
<td>Exarchos, Ioannis</td>
</tr>
<tr>
<td></td>
<td>FrC22</td>
<td>Fiasco, Alessandro</td>
</tr>
<tr>
<td></td>
<td>FrC25.3</td>
<td>Fabbiani, Filippo</td>
</tr>
<tr>
<td></td>
<td>FrC25</td>
<td>FABRE, Benoit</td>
</tr>
<tr>
<td></td>
<td>Espitia, Nicolas</td>
<td>Faedo, Nicolás</td>
</tr>
<tr>
<td></td>
<td>Etienne, Lucien</td>
<td>Fagiano, Lorenzo</td>
</tr>
<tr>
<td></td>
<td>Eudes, Alexandre</td>
<td>Farhroo, Fariba</td>
</tr>
<tr>
<td></td>
<td>Eun, Youngsoo</td>
<td>Fahri, David</td>
</tr>
<tr>
<td></td>
<td>Evangelou, Sinem Andreas</td>
<td>Farina, Francesco</td>
</tr>
<tr>
<td></td>
<td>Exarchos, Ioannis</td>
<td>Farinaz, Fatemeh</td>
</tr>
<tr>
<td></td>
<td>FrA08</td>
<td>Fay, Dominik</td>
</tr>
<tr>
<td></td>
<td>FrA08</td>
<td>Fei, Rob H.B.</td>
</tr>
<tr>
<td></td>
<td>FrA08</td>
<td>Fidan, Baris</td>
</tr>
<tr>
<td></td>
<td>FrB08</td>
<td>Fial, Christer</td>
</tr>
<tr>
<td></td>
<td>FrB08.6</td>
<td>Fiaud, Christophe</td>
</tr>
<tr>
<td></td>
<td>FrB15.4</td>
<td>Filip, Adam</td>
</tr>
<tr>
<td></td>
<td>FrC07</td>
<td>Filip, Nicola</td>
</tr>
<tr>
<td></td>
<td>FrC08</td>
<td>Findeisen, Rolf</td>
</tr>
<tr>
<td></td>
<td>FrC08</td>
<td>Filipp, Elena</td>
</tr>
<tr>
<td></td>
<td>FrC08</td>
<td>Fiorel, Davide</td>
</tr>
<tr>
<td></td>
<td>FrC08</td>
<td>Firsp, Elia</td>
</tr>
<tr>
<td></td>
<td>FrC15</td>
<td>Firsp, Elia</td>
</tr>
<tr>
<td></td>
<td>FrC15</td>
<td>Firsp, Elia</td>
</tr>
<tr>
<td>Name</td>
<td>Code</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Firoozi, Dena</td>
<td>WeB19.2</td>
<td>1615</td>
</tr>
<tr>
<td>Fisher, Michael W</td>
<td>FrC14.1</td>
<td>8000</td>
</tr>
<tr>
<td>Fitch, Robert Charles</td>
<td>FrC22.2</td>
<td>8303</td>
</tr>
<tr>
<td>Fiter, Christophe</td>
<td>WeA06</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeA06.1</td>
<td>181</td>
</tr>
<tr>
<td>Flad, Michael</td>
<td>ThA09.5</td>
<td>3128</td>
</tr>
<tr>
<td>Fleming, Cody</td>
<td>WeC13.2</td>
<td>2336</td>
</tr>
<tr>
<td>Flores, Jefferson Vieira</td>
<td>FrC12.4</td>
<td>7950</td>
</tr>
<tr>
<td>Flynn, Thomas</td>
<td>FrA13.1</td>
<td>6092</td>
</tr>
<tr>
<td>Froqen Tchuendom, Rinel</td>
<td>WeA09.3</td>
<td>299</td>
</tr>
<tr>
<td>Fohler, Gerhard</td>
<td>ThA04.3</td>
<td>2928</td>
</tr>
<tr>
<td>Foight, Dillon</td>
<td>WeC06.6</td>
<td>2096</td>
</tr>
<tr>
<td>Folkard, Simon</td>
<td>ThB01.2</td>
<td>3756</td>
</tr>
<tr>
<td>Fontanelli, Daniele</td>
<td>FrC09.4</td>
<td>7838</td>
</tr>
<tr>
<td>Fontes, Fernando A. C. C.</td>
<td>FrB15.2</td>
<td>7116</td>
</tr>
<tr>
<td>Foo, Mathias</td>
<td>FrB01.6</td>
<td>6634</td>
</tr>
<tr>
<td>Forbes, James Richard</td>
<td>FrC11.3</td>
<td>7905</td>
</tr>
<tr>
<td>Ford, Jason</td>
<td>FrC22.1</td>
<td>8296</td>
</tr>
<tr>
<td>Forgione, Marco</td>
<td>WeC23.4</td>
<td>2714</td>
</tr>
<tr>
<td>Formentin, Simone</td>
<td>WeA23.4</td>
<td>822</td>
</tr>
<tr>
<td>Fornasini, Etto</td>
<td>WeA04.4</td>
<td>126</td>
</tr>
<tr>
<td>Forni, Fulvio</td>
<td>FrA12.6</td>
<td>6086</td>
</tr>
<tr>
<td></td>
<td>FrB01.5</td>
<td>6628</td>
</tr>
<tr>
<td></td>
<td>FrB05.2</td>
<td>6748</td>
</tr>
<tr>
<td>Forni, Paolo</td>
<td>WeB12.5</td>
<td>1362</td>
</tr>
<tr>
<td>Forti, Mauro</td>
<td>ThA17.5</td>
<td>3423</td>
</tr>
<tr>
<td>Fosson, Sophie</td>
<td>FrB11.2</td>
<td>6971</td>
</tr>
<tr>
<td>Fougner, Anders Lyngvi</td>
<td>FrA01.3</td>
<td>5654</td>
</tr>
<tr>
<td>FOURATI, Hassen</td>
<td>FrC11</td>
<td>O</td>
</tr>
<tr>
<td>Fragoso, Marcelo</td>
<td>ThB19.1</td>
<td>4415</td>
</tr>
<tr>
<td></td>
<td>ThB19.2</td>
<td>4421</td>
</tr>
<tr>
<td>Fraile, Lucas</td>
<td>WeB24.2</td>
<td>1803</td>
</tr>
<tr>
<td>Franceschelli, Mauro</td>
<td>ThA25</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThA25.2</td>
<td>3691</td>
</tr>
<tr>
<td></td>
<td>ThA25.5</td>
<td>3710</td>
</tr>
<tr>
<td>Franceschetti, Massimo</td>
<td>ThB12.6</td>
<td>4183</td>
</tr>
<tr>
<td>Franchi, Antonio</td>
<td>WeC06.4</td>
<td>2084</td>
</tr>
<tr>
<td></td>
<td>WeC07.6</td>
<td>2132</td>
</tr>
<tr>
<td>Franci, Alessio</td>
<td>ThC01.5</td>
<td>4723</td>
</tr>
<tr>
<td>Franco, Elisa</td>
<td>WeB01.6</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td>WeC01.3</td>
<td>1887</td>
</tr>
<tr>
<td>Franco, Enrico</td>
<td>WeB03.4</td>
<td>1019</td>
</tr>
<tr>
<td>Franco Jaramillo, José Roberto</td>
<td>WeA03.5</td>
<td>96</td>
</tr>
<tr>
<td>Franco-de los Reyes, Hugo Andrés</td>
<td>ThB08.4</td>
<td>4023</td>
</tr>
<tr>
<td>Frankowska, Helene</td>
<td>WeB15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeB15</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeB15.1</td>
<td>1456</td>
</tr>
<tr>
<td></td>
<td>WeC15</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeC15.3</td>
<td>2416</td>
</tr>
<tr>
<td>Franze', Giuseppe</td>
<td>FrB21.6</td>
<td>7370</td>
</tr>
<tr>
<td>Frasca, Mattia</td>
<td>WeB06</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeB06.6</td>
<td>1138</td>
</tr>
<tr>
<td>Frasca, Paolo</td>
<td>WeA10.3</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>ThC10.3</td>
<td>5050</td>
</tr>
<tr>
<td>Freeman, Christopher T.</td>
<td>ThC24</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThC24.4</td>
<td>5587</td>
</tr>
<tr>
<td>Freudenthaler, Gerhard</td>
<td>WeA16.4</td>
<td>561</td>
</tr>
<tr>
<td>Frey, Georg</td>
<td>WeC04.1</td>
<td>1991</td>
</tr>
<tr>
<td>Frezzatto, Luciano</td>
<td>FrB13.6</td>
<td>7069</td>
</tr>
<tr>
<td>Fribourg, Laurent</td>
<td>WeA17</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeA17.4</td>
<td>599</td>
</tr>
<tr>
<td>Fridman, Emilia</td>
<td>WeA02.6</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>WeA08.1</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>WeA08.3</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>WeB08.4</td>
<td>1201</td>
</tr>
<tr>
<td></td>
<td>WeC08.3</td>
<td>2151</td>
</tr>
<tr>
<td></td>
<td>WeC20.1</td>
<td>2592</td>
</tr>
<tr>
<td></td>
<td>ThB08.5</td>
<td>4029</td>
</tr>
<tr>
<td></td>
<td>ThB25</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThB25.1</td>
<td>4642</td>
</tr>
<tr>
<td></td>
<td>FrB12.1</td>
<td>7001</td>
</tr>
<tr>
<td>Fridman, Leonid</td>
<td>FrA10.3</td>
<td>5995</td>
</tr>
<tr>
<td></td>
<td>FrC10.3</td>
<td>7869</td>
</tr>
<tr>
<td>Fromion, Vincent</td>
<td>FrC01</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrC01.2</td>
<td>7536</td>
</tr>
<tr>
<td></td>
<td>FrC14</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrC14.4</td>
<td>8018</td>
</tr>
<tr>
<td></td>
<td>FrC18.6</td>
<td>8178</td>
</tr>
<tr>
<td>Frost, Susan</td>
<td>ThA08.2</td>
<td>3072</td>
</tr>
<tr>
<td>Fruchard, Mathieu</td>
<td>FrB07.5</td>
<td>6844</td>
</tr>
<tr>
<td>Fu, Jie</td>
<td>WeC10.3</td>
<td>2226</td>
</tr>
<tr>
<td></td>
<td>ThC17.4</td>
<td>5323</td>
</tr>
<tr>
<td></td>
<td>ThC17.5</td>
<td>5330</td>
</tr>
<tr>
<td>Fu, Michael G</td>
<td>FrA19.2</td>
<td>6332</td>
</tr>
<tr>
<td></td>
<td>FrC12.4</td>
<td>7950</td>
</tr>
<tr>
<td></td>
<td>FrC21.1</td>
<td>8260</td>
</tr>
<tr>
<td>Fu, Minyue</td>
<td>FrB02.4</td>
<td>6657</td>
</tr>
<tr>
<td>Fulmer, Daniel</td>
<td>FrC20.5</td>
<td>8248</td>
</tr>
<tr>
<td>Furieri, Luca</td>
<td>WeC23.5</td>
<td>2796</td>
</tr>
<tr>
<td></td>
<td>ThA19.1</td>
<td>3471</td>
</tr>
<tr>
<td></td>
<td>ThC13.4</td>
<td>5168</td>
</tr>
<tr>
<td></td>
<td>ThC24.6</td>
<td>5599</td>
</tr>
<tr>
<td></td>
<td>FrA24.4</td>
<td>6530</td>
</tr>
<tr>
<td>Gallo, Alexander</td>
<td>ThC25.4</td>
<td>5623</td>
</tr>
<tr>
<td>Gambuzza, Lucia Valentina</td>
<td>WeB06.6</td>
<td>1138</td>
</tr>
<tr>
<td>Gan, Die</td>
<td>ThC11.2</td>
<td>5082</td>
</tr>
<tr>
<td>Ganecz, Artur</td>
<td>WeA22.3</td>
<td>777</td>
</tr>
<tr>
<td>Gao, Bolin</td>
<td>FrA09.1</td>
<td>5942</td>
</tr>
<tr>
<td>Gao, Rui</td>
<td>ThC05.1</td>
<td>4852</td>
</tr>
<tr>
<td>Gao, Shuang</td>
<td>ThB21.5</td>
<td>4514</td>
</tr>
<tr>
<td></td>
<td>ThC10.6</td>
<td>5068</td>
</tr>
<tr>
<td></td>
<td>FrC23.5</td>
<td>8359</td>
</tr>
<tr>
<td>Gao, Yulong</td>
<td>WeB10.4</td>
<td>1273</td>
</tr>
<tr>
<td>Garagic, Denis</td>
<td>WeC09.4</td>
<td>2194</td>
</tr>
<tr>
<td>Garatti, Simone</td>
<td>WeB23.3</td>
<td>1772</td>
</tr>
<tr>
<td>Garcia, Cristina</td>
<td>FrC24.4</td>
<td>8392</td>
</tr>
<tr>
<td>Garcia, Eloy</td>
<td>FrB20.4</td>
<td>7319</td>
</tr>
<tr>
<td>Garcia Carrillo, Luis Rodolfo</td>
<td>FrA11.1</td>
<td>6019</td>
</tr>
<tr>
<td>Garcia de Marina, Hector</td>
<td>FrB20.6</td>
<td>7333</td>
</tr>
<tr>
<td>Garcia Violini, Demián</td>
<td>ThB15.4</td>
<td>4286</td>
</tr>
<tr>
<td>Garg, Kunal</td>
<td>WeB14.2</td>
<td>1422</td>
</tr>
<tr>
<td>Garin, Federica</td>
<td>ThA21.2</td>
<td>3552</td>
</tr>
<tr>
<td>Garofalo, Franco</td>
<td>WeB21.6</td>
<td>1716</td>
</tr>
<tr>
<td>Garone, Emanuele</td>
<td>WeC05</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeC05.2</td>
<td>2033</td>
</tr>
<tr>
<td></td>
<td>FrC21.6</td>
<td>8290</td>
</tr>
<tr>
<td>Garriga-Casanovas, Arnau</td>
<td>WeB03.4</td>
<td>1019</td>
</tr>
<tr>
<td>Garulli, Andrea</td>
<td>ThB11.2</td>
<td>4121</td>
</tr>
<tr>
<td></td>
<td>ThC07.4</td>
<td>4946</td>
</tr>
<tr>
<td></td>
<td>FrB22</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrB22.1</td>
<td>7376</td>
</tr>
<tr>
<td>Gaskonov, Alexander</td>
<td>FrB23.4</td>
<td>7435</td>
</tr>
<tr>
<td>Gasparri, Andrea</td>
<td>ThA25.5</td>
<td>3710</td>
</tr>
<tr>
<td>Gatsis, Nikolaos</td>
<td>ThA11.4</td>
<td>3196</td>
</tr>
<tr>
<td></td>
<td>ThC21.4</td>
<td>5474</td>
</tr>
<tr>
<td>Gaubert, Stephanie</td>
<td>WeA25.3</td>
<td>890</td>
</tr>
<tr>
<td>Gaudio, Joseph E.</td>
<td>ThA23</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThA23</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThB23</td>
<td>O</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Article Code</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mücke, Nikolaj Takata</td>
<td>ThB15.1</td>
<td>4267</td>
</tr>
<tr>
<td>Mudumbai, Raghuraman</td>
<td>ThB11.3</td>
<td>4127</td>
</tr>
<tr>
<td>Muhammad, Abubakr</td>
<td>WeB21.2</td>
<td>1692</td>
</tr>
<tr>
<td>Mukaidani, Hiroaki</td>
<td>FrA05.6</td>
<td>5626</td>
</tr>
<tr>
<td>Mukhopadhyay, Sutirtha</td>
<td>FrB11.3</td>
<td>6977</td>
</tr>
<tr>
<td>Muller, Matthias A</td>
<td>WeA20.4</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>WeA23</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeB13.1</td>
<td>1377</td>
</tr>
<tr>
<td></td>
<td>WeB13.2</td>
<td>1383</td>
</tr>
<tr>
<td></td>
<td>WeB23</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeB23</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeC23</td>
<td>O</td>
</tr>
<tr>
<td>Munk, Jeffrey</td>
<td>ThA05.2</td>
<td>2958</td>
</tr>
<tr>
<td>Münker, Tobias</td>
<td>FrA22.1</td>
<td>6437</td>
</tr>
<tr>
<td>Muñoz de la Peña, David</td>
<td>ThB14.4</td>
<td>4246</td>
</tr>
<tr>
<td></td>
<td>FrA22.3</td>
<td>6449</td>
</tr>
<tr>
<td></td>
<td>FrC05.1</td>
<td>7671</td>
</tr>
<tr>
<td>Murali, Varun</td>
<td>WeC18.2</td>
<td>7522</td>
</tr>
<tr>
<td>Murali, Vishal</td>
<td>FrA18.2</td>
<td>6295</td>
</tr>
<tr>
<td>MURALI MADHAVAN RATHAI, KARTHIK</td>
<td>FrC03.1</td>
<td>7596</td>
</tr>
<tr>
<td>Muros, Francisco Javier</td>
<td>WeB05.4</td>
<td>1096</td>
</tr>
<tr>
<td>Murray, Richard M.</td>
<td>WeC25.4</td>
<td>2788</td>
</tr>
<tr>
<td>Murray, Ryan</td>
<td>FrA17.6</td>
<td>6262</td>
</tr>
<tr>
<td></td>
<td>WeC16.5</td>
<td>2436</td>
</tr>
<tr>
<td>Mylvaganam, Thulasi</td>
<td>ThB20</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThB20.5</td>
<td>4477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nadales, Juan</td>
<td>ThB14.4</td>
<td>4246</td>
</tr>
<tr>
<td>Naderi Lordejani, Sajad</td>
<td>FrC08.1</td>
<td>7782</td>
</tr>
<tr>
<td>Nadri, Madhia</td>
<td>ThA18.2</td>
<td>3441</td>
</tr>
<tr>
<td>Nagahara, Masaaki</td>
<td>WeA15.5</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>WeA25</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td>FrC21.3</td>
<td>8272</td>
</tr>
<tr>
<td>Naghizadeh, Parinaz</td>
<td>ThC18.6</td>
<td>5374</td>
</tr>
<tr>
<td>Naghnaeian, Mohammad</td>
<td>ThC20.6</td>
<td>5450</td>
</tr>
<tr>
<td>Nagi, Rakesh</td>
<td>ThB24.5</td>
<td>4630</td>
</tr>
<tr>
<td>Nahata, Pulkit</td>
<td>FrA25.4</td>
<td>6566</td>
</tr>
<tr>
<td>Nair, Girish N.</td>
<td>ThA22.2</td>
<td>3587</td>
</tr>
<tr>
<td>Nakao, Hiroya</td>
<td>WeB12.3</td>
<td>1351</td>
</tr>
<tr>
<td>Nakka, Yashwanth Kumar</td>
<td>ThB03.1</td>
<td>3811</td>
</tr>
<tr>
<td>Namvar, Mehrzad</td>
<td>ThA04.2</td>
<td>2922</td>
</tr>
<tr>
<td>Nandarooni, Sai Pushpak</td>
<td>FrC16.6</td>
<td>8106</td>
</tr>
<tr>
<td>Nanos, Kostas</td>
<td>WeC07.5</td>
<td>2117</td>
</tr>
<tr>
<td>Napolitano, Sara</td>
<td>WeB01.2</td>
<td>933</td>
</tr>
<tr>
<td>Narayanan, Vignesh</td>
<td>WeA12.5</td>
<td>419</td>
</tr>
<tr>
<td>Nardon, Eric</td>
<td>ThA12.1</td>
<td>3214</td>
</tr>
<tr>
<td>Nasir, Hasan</td>
<td>ThA16.4</td>
<td>3377</td>
</tr>
<tr>
<td>Naso, David</td>
<td>FrC12.2</td>
<td>7937</td>
</tr>
<tr>
<td>Natarajan, Vivek</td>
<td>FrA08.1</td>
<td>5906</td>
</tr>
<tr>
<td>Nayyar, Ashutosh</td>
<td>ThB09.4</td>
<td>4061</td>
</tr>
<tr>
<td>Nazir, Nawaf</td>
<td>ThC05.2</td>
<td>4858</td>
</tr>
<tr>
<td>Ndoye, Aboubacar</td>
<td>FrC17.3</td>
<td>8124</td>
</tr>
<tr>
<td>Necoara, Ion</td>
<td>WeB16.3</td>
<td>1507</td>
</tr>
<tr>
<td>Nedich, Angelina</td>
<td>WeB16</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeB16.3</td>
<td>1507</td>
</tr>
<tr>
<td></td>
<td>FrA09.2</td>
<td>5948</td>
</tr>
<tr>
<td></td>
<td>FrB23</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrB23</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>FrC23</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrC23</td>
<td>O</td>
</tr>
<tr>
<td>Nehaous, Iamri</td>
<td>ThB18.2</td>
<td>1577</td>
</tr>
<tr>
<td>Nejari, Fathia</td>
<td>FrC23.6</td>
<td>8366</td>
</tr>
<tr>
<td>Nelles, Oliver</td>
<td>FrA22.1</td>
<td>6437</td>
</tr>
<tr>
<td>Nesic, Dragan</td>
<td>WeA06.6</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>WeA14.4</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>WeB20.1</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td>ThA17.2</td>
<td>3405</td>
</tr>
<tr>
<td></td>
<td>ThC21.5</td>
<td>5480</td>
</tr>
<tr>
<td></td>
<td>FrA20.4</td>
<td>6380</td>
</tr>
<tr>
<td></td>
<td>FrC21.5</td>
<td>8284</td>
</tr>
<tr>
<td>Nettelkoven, Alexander</td>
<td>ThC02.5</td>
<td>4761</td>
</tr>
<tr>
<td>Ng, Yonhon</td>
<td>WeC18.4</td>
<td>2536</td>
</tr>
<tr>
<td>Nguyen, Anh-Tu</td>
<td>ThC04.3</td>
<td>4829</td>
</tr>
<tr>
<td>Nguyen, Dinh Hoa</td>
<td>ThC20.2</td>
<td>5426</td>
</tr>
<tr>
<td>Nguyen, Hieu</td>
<td>FrB25.6</td>
<td>7524</td>
</tr>
<tr>
<td>Nguyen, Le Ha Vy</td>
<td>WeB02.2</td>
<td>971</td>
</tr>
<tr>
<td>Nguyen, Quan</td>
<td>FrC03.5</td>
<td>7623</td>
</tr>
<tr>
<td>Niazi, Muhammad Umar B</td>
<td>ThC10</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThC10.1</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThC10.1</td>
<td>O</td>
</tr>
<tr>
<td>Niculescu, Silviu-Iulian</td>
<td>WeC05.6</td>
<td>2060</td>
</tr>
<tr>
<td>Nie, Yuanbo</td>
<td>ThA15.6</td>
<td>3352</td>
</tr>
<tr>
<td>Nidampallangi, Thanishooting</td>
<td>ThB16</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThB16</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThC16</td>
<td>O</td>
</tr>
<tr>
<td>Niederwieser, Helmut</td>
<td>FrB10.1</td>
<td>6930</td>
</tr>
<tr>
<td>Niedzwiecki, Maciej</td>
<td>WeA22.3</td>
<td>777</td>
</tr>
<tr>
<td>Nielsen, Poul M F</td>
<td>FrA01.2</td>
<td>5647</td>
</tr>
<tr>
<td>Niemann, Henrik</td>
<td>FrA02</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA02</td>
<td>C</td>
</tr>
<tr>
<td>Nijmeijer, Hendrik</td>
<td>FrA08.4</td>
<td>5924</td>
</tr>
<tr>
<td>Nikitin, Denis</td>
<td>ThC10.3</td>
<td>5050</td>
</tr>
<tr>
<td>Nikolaev, Maksim S</td>
<td>WeA07.1</td>
<td>220</td>
</tr>
<tr>
<td>Nikoienajed, Nastaran</td>
<td>FrB07.3</td>
<td>6832</td>
</tr>
<tr>
<td>Nikou, Alexandros</td>
<td>FrC22.3</td>
<td>8311</td>
</tr>
<tr>
<td>Nilsson, Petter</td>
<td>FrA17.6</td>
<td>6282</td>
</tr>
<tr>
<td>Nivison, Scott</td>
<td>WeC03.2</td>
<td>1959</td>
</tr>
<tr>
<td>Noack, Benjamin</td>
<td>ThB05.6</td>
<td>3916</td>
</tr>
<tr>
<td>Noireaux, Vincent</td>
<td>ThA01.3</td>
<td>2820</td>
</tr>
<tr>
<td>Nojavanazadeh, Donya</td>
<td>FrB20.2</td>
<td>7307</td>
</tr>
<tr>
<td>Nonhoff, Marko</td>
<td>FrC22.6</td>
<td>8329</td>
</tr>
<tr>
<td>Normand-Cyrot, Dorothée</td>
<td>WeB14</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThB14.2</td>
<td>4234</td>
</tr>
<tr>
<td></td>
<td>FrA18</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA18.4</td>
<td>6307</td>
</tr>
<tr>
<td>Noroozi, Navid</td>
<td>WeB20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeB20.5</td>
<td>1674</td>
</tr>
<tr>
<td>Norton, Larry</td>
<td>FrC19.5</td>
<td>5406</td>
</tr>
<tr>
<td></td>
<td>ThA01.1</td>
<td>7530</td>
</tr>
<tr>
<td>Notarnicola, Ivano</td>
<td>ThA06.2</td>
<td>2994</td>
</tr>
<tr>
<td></td>
<td>FrA20.3</td>
<td>6374</td>
</tr>
<tr>
<td>Notarstefano, Giuseppe</td>
<td>ThA06.2</td>
<td>2994</td>
</tr>
<tr>
<td></td>
<td>FrA20</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrA20.1</td>
<td>6362</td>
</tr>
<tr>
<td></td>
<td>FrA20.3</td>
<td>6374</td>
</tr>
<tr>
<td></td>
<td>FrB23.6</td>
<td>7448</td>
</tr>
<tr>
<td>Nouailletas, Rémy</td>
<td>ThA12</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>ThA12.1</td>
<td>3214</td>
</tr>
<tr>
<td></td>
<td>FrB08.3</td>
<td>6869</td>
</tr>
<tr>
<td>Novara, Carlo</td>
<td>WeA16.1</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>WeC21.2</td>
<td>2628</td>
</tr>
<tr>
<td>Nowak, Kathleen</td>
<td>FrC06.5</td>
<td>7733</td>
</tr>
<tr>
<td>Nowzari, Cameron</td>
<td>WeC20.2</td>
<td>2598</td>
</tr>
<tr>
<td>Nozad, Erfan</td>
<td>WeB21.1</td>
<td>1686</td>
</tr>
<tr>
<td>Nugroho, Sebastian Adi</td>
<td>ThB22.5</td>
<td>4551</td>
</tr>
<tr>
<td>Nunes, Eduardo Vieira Leao</td>
<td>FrC10.1</td>
<td>7857</td>
</tr>
<tr>
<td>Nurdin, Hendra I</td>
<td>WeA12.2</td>
<td>401</td>
</tr>
<tr>
<td>Nurkanović, Armin</td>
<td>ThC16.6</td>
<td>5298</td>
</tr>
<tr>
<td>O’Leary, Timothy</td>
<td>FrB01.5</td>
<td>6628</td>
</tr>
<tr>
<td>OBEID, Hussein</td>
<td>FrC10.3</td>
<td>7869</td>
</tr>
</tbody>
</table>

Note: The table contains entries with article codes that are likely to be references to scientific papers or publications. The context of the document is not provided, but it appears to be a list of authors or contributors with their respective affiliations and possibly some code or identifier numbers associated with their work.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park, Chaneun</td>
<td>ThA02.3</td>
<td>2858</td>
</tr>
<tr>
<td>Park, In Seok</td>
<td>ThA02.3</td>
<td>2858</td>
</tr>
<tr>
<td>Park, Jinkyoo</td>
<td>WeA04.5</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>FrB06.4</td>
<td>6799</td>
</tr>
<tr>
<td>Park, PooGyeon</td>
<td>ThA02.3</td>
<td>2858</td>
</tr>
<tr>
<td>Park, Shinkyu</td>
<td>FrA26</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA26</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA26</td>
<td>6584</td>
</tr>
<tr>
<td>Parrilo, Pablo A</td>
<td>ThB19.5</td>
<td>4439</td>
</tr>
<tr>
<td>Parro, Vanderlei</td>
<td>ThB01.2</td>
<td>3756</td>
</tr>
<tr>
<td>Partovi, Alireza</td>
<td>WeB04.4</td>
<td>1056</td>
</tr>
<tr>
<td>Pasveriani, Masood</td>
<td>FrB25.6</td>
<td>7524</td>
</tr>
<tr>
<td>Pasand, Venus</td>
<td>FrC14.2</td>
<td>8007</td>
</tr>
<tr>
<td>Paschalidis, Ioannis Ch.</td>
<td>ThA24</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThA24.1</td>
<td>3655</td>
</tr>
<tr>
<td></td>
<td>ThA24.3</td>
<td>3664</td>
</tr>
<tr>
<td></td>
<td>ThC12</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThC12.1</td>
<td>5113</td>
</tr>
<tr>
<td>Pascoal, Antonio Manuel</td>
<td>ThB15.5</td>
<td>4292</td>
</tr>
<tr>
<td>Pasha, Syed Ahmed</td>
<td>ThA03.5</td>
<td>2904</td>
</tr>
<tr>
<td>Pasik-Duncan, Bozena</td>
<td>WeA09.2</td>
<td>293</td>
</tr>
<tr>
<td>Pasque, Cecilia</td>
<td>WeA10</td>
<td>O</td>
</tr>
<tr>
<td>Pasqualetti, Fabio</td>
<td>WeB24</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeB24.6</td>
<td>1828</td>
</tr>
<tr>
<td></td>
<td>WeC06.2</td>
<td>2072</td>
</tr>
<tr>
<td></td>
<td>ThB18.4</td>
<td>4397</td>
</tr>
<tr>
<td></td>
<td>ThC01.1</td>
<td>4697</td>
</tr>
<tr>
<td></td>
<td>WeC06.1</td>
<td>2066</td>
</tr>
<tr>
<td>Paszke, Wojciech</td>
<td>FrA24.2</td>
<td>6518</td>
</tr>
<tr>
<td>Patermain, Santiago</td>
<td>ThC24.5</td>
<td>5593</td>
</tr>
<tr>
<td>Patan, Maciej</td>
<td>WeB08.2</td>
<td>1189</td>
</tr>
<tr>
<td>Patroalis, Panagiotis</td>
<td>ThB16.4</td>
<td>4325</td>
</tr>
<tr>
<td></td>
<td>ThC16.2</td>
<td>5272</td>
</tr>
<tr>
<td></td>
<td>FrA23</td>
<td>4995</td>
</tr>
<tr>
<td></td>
<td>FrA23.5</td>
<td>3827</td>
</tr>
<tr>
<td>Patterson, Andrew</td>
<td>ThB03.3</td>
<td>3006</td>
</tr>
<tr>
<td>Patterson, Stacy</td>
<td>ThA02.3</td>
<td>4583</td>
</tr>
<tr>
<td>Paulino, Nuno</td>
<td>FrC01.1</td>
<td>6641</td>
</tr>
<tr>
<td>Paulos, James</td>
<td>FrB20.7</td>
<td>7325</td>
</tr>
<tr>
<td>Paunon, Lassi</td>
<td>WeA01.1</td>
<td>1</td>
</tr>
<tr>
<td>Pavel, Lucra</td>
<td>ThC09.4</td>
<td>5020</td>
</tr>
<tr>
<td></td>
<td>ThC09.6</td>
<td>5032</td>
</tr>
<tr>
<td></td>
<td>FrA09</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrA09.1</td>
<td>5942</td>
</tr>
<tr>
<td>Pavon, Michele</td>
<td>WeC19.1</td>
<td>2556</td>
</tr>
<tr>
<td>Pavon, Michele</td>
<td>FrC01.1</td>
<td>7530</td>
</tr>
<tr>
<td>Pavon, Michele</td>
<td>FrC19</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrC19.4</td>
<td>8207</td>
</tr>
<tr>
<td>Peaucelle, Dimitri</td>
<td>ThC19</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThC19.4</td>
<td>5400</td>
</tr>
<tr>
<td>Pedarsani, Ramtin</td>
<td>WeA10.5</td>
<td>347</td>
</tr>
<tr>
<td>Pedram, Ali Reza</td>
<td>WeB09.5</td>
<td>1243</td>
</tr>
<tr>
<td>Peet, Matthew M</td>
<td>WeA08.2</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>WeA08.5</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>WeB02.4</td>
<td>983</td>
</tr>
<tr>
<td></td>
<td>WeC14.6</td>
<td>2367</td>
</tr>
<tr>
<td></td>
<td>ThB24</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>ThB24.4</td>
<td>4622</td>
</tr>
<tr>
<td>Peixoto, Alessandro Jacoud</td>
<td>FrC10.4</td>
<td>7875</td>
</tr>
<tr>
<td>Peletier, Reynier</td>
<td>FrC12.3</td>
<td>7944</td>
</tr>
<tr>
<td>Pena, Ismael da Silva</td>
<td>WeC13.3</td>
<td>2344</td>
</tr>
<tr>
<td>Peña, Jonatán</td>
<td>ThC18.3</td>
<td>5356</td>
</tr>
<tr>
<td>Peraroch, Ignacio</td>
<td>WeC02.6</td>
<td>1945</td>
</tr>
<tr>
<td>Peng, Fachun</td>
<td>ThA23.1</td>
<td>3617</td>
</tr>
<tr>
<td>Peri, Tamas</td>
<td>ThB02.3</td>
<td>3793</td>
</tr>
<tr>
<td>Pepe, Pierdomenico</td>
<td>WeA02.1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeA02.2</td>
<td>43</td>
</tr>
<tr>
<td>Pequito, Sergio</td>
<td>ThC01</td>
<td>CC</td>
</tr>
<tr>
<td>Perron, Anna Maria</td>
<td>FrA18.1</td>
<td>6288</td>
</tr>
<tr>
<td>Pereira, Marcus</td>
<td>FrB06.5</td>
<td>6807</td>
</tr>
<tr>
<td>Pereira, Mario</td>
<td>WeA05.2</td>
<td>151</td>
</tr>
<tr>
<td>Pezzolla; Silvia; Paulo Sergio</td>
<td>FrC21.6</td>
<td>8290</td>
</tr>
<tr>
<td>Petersen, Christopher</td>
<td>ThC15.2</td>
<td>5231</td>
</tr>
<tr>
<td>Petersen, Eike</td>
<td>FrB11.6</td>
<td>6995</td>
</tr>
<tr>
<td>Petersen, Ivan R</td>
<td>WeA12.6</td>
<td>425</td>
</tr>
<tr>
<td>Perspectives, Laetitia</td>
<td>ThA08.3</td>
<td>3080</td>
</tr>
<tr>
<td>Perez Montenegro, Carlos Norbert</td>
<td>WeC21.2</td>
<td>2628</td>
</tr>
<tr>
<td>Perrino, Giannisone</td>
<td>WeA09.2</td>
<td>933</td>
</tr>
<tr>
<td>Perruquetti, Wilfrid</td>
<td>FrB13.3</td>
<td>7049</td>
</tr>
<tr>
<td>Peschke, Tobias</td>
<td>WeA13.5</td>
<td>457</td>
</tr>
<tr>
<td>Pesenti, Raffaele</td>
<td>WeB06.4</td>
<td>1126</td>
</tr>
<tr>
<td>Petersen, Christopher</td>
<td>ThC15.2</td>
<td>5231</td>
</tr>
<tr>
<td>Petersen, Eike</td>
<td>FrB11.6</td>
<td>6995</td>
</tr>
<tr>
<td>Petreczky, Mihaly</td>
<td>ThB02</td>
<td>C</td>
</tr>
<tr>
<td>Pettersen, Kristin Y</td>
<td>FrC22.6</td>
<td>8329</td>
</tr>
<tr>
<td>Pfeifer, Martin</td>
<td>ThA11.1</td>
<td>3176</td>
</tr>
<tr>
<td>Pfiffer, Laurent</td>
<td>WeB15.5</td>
<td>1480</td>
</tr>
<tr>
<td>Pfifer, Harald</td>
<td>FrA05.3</td>
<td>5805</td>
</tr>
<tr>
<td>PHAM, Thanh-Phong</td>
<td>ThA18.5</td>
<td>3459</td>
</tr>
<tr>
<td>Pham, Van Thiem</td>
<td>ThC20.2</td>
<td>5426</td>
</tr>
<tr>
<td>Phan, Tung, M</td>
<td>WeC25.4</td>
<td>2788</td>
</tr>
<tr>
<td>Phillips, Sean</td>
<td>FrC18</td>
<td>C</td>
</tr>
<tr>
<td>Phogat, Kavir Singh</td>
<td>FrB14.2</td>
<td>7081</td>
</tr>
<tr>
<td>Piacentini, Giulia</td>
<td>ThA15.4</td>
<td>3140</td>
</tr>
<tr>
<td>PIAT, Emmanuel</td>
<td>FrA09.1</td>
<td>1495</td>
</tr>
<tr>
<td>Piccalo, Miguel</td>
<td>FrA13.2</td>
<td>6100</td>
</tr>
<tr>
<td>Picco, Dario</td>
<td>WeB17.1</td>
<td>1532</td>
</tr>
<tr>
<td>Pigeon, Eric</td>
<td>WeC23.4</td>
<td>2714</td>
</tr>
<tr>
<td>Pighin, Dario</td>
<td>WeC15.4</td>
<td>2432</td>
</tr>
<tr>
<td>Pilionetto, Gianluigi</td>
<td>WeA23.4</td>
<td>822</td>
</tr>
<tr>
<td>Pili, Alessandro</td>
<td>FrA08.5</td>
<td>5930</td>
</tr>
<tr>
<td>Pilo de la Fuerte, Eduardo</td>
<td>ThA13.3</td>
<td>3260</td>
</tr>
<tr>
<td>Pin, Gilbert</td>
<td>FrA13.4</td>
<td>6112</td>
</tr>
<tr>
<td>PINATON, Jacques</td>
<td>ThC02.2</td>
<td>4741</td>
</tr>
<tr>
<td>Ping, Xubin</td>
<td>WeC17.1</td>
<td>2479</td>
</tr>
<tr>
<td>Pinton, Pierre</td>
<td>FrB25.2</td>
<td>7498</td>
</tr>
<tr>
<td>Pito, Samuel C</td>
<td>ThB15.3</td>
<td>4280</td>
</tr>
<tr>
<td>Piovoso, Michael J.</td>
<td>FrA01.4</td>
<td>5662</td>
</tr>
<tr>
<td>Pirani, Mohammad</td>
<td>ThB18.3</td>
<td>4391</td>
</tr>
<tr>
<td>Pirad, Luigi</td>
<td>FrA20.2</td>
<td>6368</td>
</tr>
<tr>
<td>Pisano, Alessandro</td>
<td>WeB22.1</td>
<td>1722</td>
</tr>
<tr>
<td></td>
<td>FrA08.5</td>
<td>5930</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td>Year</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Plestan, Franck</td>
<td>FrB10.2</td>
<td>6936</td>
</tr>
<tr>
<td>Poggiozini, Laura</td>
<td>WeB15</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeB15.2</td>
<td>1462</td>
</tr>
<tr>
<td></td>
<td>WeC15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeC15</td>
<td>O</td>
</tr>
<tr>
<td>Pohl, Volker</td>
<td>FrC06.2</td>
<td>7714</td>
</tr>
<tr>
<td>Polcz, Péter</td>
<td>ThB02.3</td>
<td>3793</td>
</tr>
<tr>
<td>Polli, Michael</td>
<td>FrB06.4</td>
<td>6799</td>
</tr>
<tr>
<td>Polushin, Illia G.</td>
<td>FrB14.1</td>
<td>7075</td>
</tr>
<tr>
<td>Polyakov, Andrey</td>
<td>WeA01.3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>ThA14.6</td>
<td>3316</td>
</tr>
<tr>
<td></td>
<td>ThB08.5</td>
<td>4029</td>
</tr>
<tr>
<td></td>
<td>ThC08</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThC08.5</td>
<td>4990</td>
</tr>
<tr>
<td></td>
<td>FrB14</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>FrB14.3</td>
<td>7087</td>
</tr>
<tr>
<td></td>
<td>FrB14.5</td>
<td>7099</td>
</tr>
<tr>
<td>Polycarpou, Marios M.</td>
<td>WeA25.6</td>
<td>909</td>
</tr>
<tr>
<td>Pomet, Jean-Baptiste</td>
<td>WeA15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeA15</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>WeA15.3</td>
<td>517</td>
</tr>
<tr>
<td>Pommier-Budinger, Valerie</td>
<td>FrB08.1</td>
<td>6857</td>
</tr>
<tr>
<td>Pontes Duff Pereira, Igor</td>
<td>FrC08.5</td>
<td>7806</td>
</tr>
<tr>
<td>Pooolis, Bala Kameshwar</td>
<td>FrB25.1</td>
<td>7492</td>
</tr>
<tr>
<td>Poonawala, Hasa A.</td>
<td>WeB14</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeB14.5</td>
<td>1442</td>
</tr>
<tr>
<td>Poor, H. Vincent</td>
<td>ThA06.6</td>
<td>3018</td>
</tr>
<tr>
<td>Poovendran, Radha</td>
<td>WeA16</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeA16.5</td>
<td>567</td>
</tr>
<tr>
<td></td>
<td>WeB25</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeB25.2</td>
<td>1842</td>
</tr>
<tr>
<td></td>
<td>ThB09.3</td>
<td>4053</td>
</tr>
<tr>
<td></td>
<td>FrB09.3</td>
<td>6905</td>
</tr>
<tr>
<td>Popescu, Andrei</td>
<td>FrB07.4</td>
<td>6838</td>
</tr>
<tr>
<td>Possier, Corrado</td>
<td>WeA11.6</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>WeA16.1</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>ThB01.1</td>
<td>3750</td>
</tr>
<tr>
<td></td>
<td>FrA18.3</td>
<td>6301</td>
</tr>
<tr>
<td>Postlتهاwai, Ian</td>
<td>WeB02.3.7</td>
<td>976</td>
</tr>
<tr>
<td>Postoyan, Romain</td>
<td>WeA14</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>WeA14.4</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>WeB20.1</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td>WeB20.3</td>
<td>1662</td>
</tr>
<tr>
<td></td>
<td>WeC20.3</td>
<td>2604</td>
</tr>
<tr>
<td></td>
<td>ThA17.2</td>
<td>3405</td>
</tr>
<tr>
<td></td>
<td>ThC21.5</td>
<td>5480</td>
</tr>
<tr>
<td>Potschka, Andreas</td>
<td>ThC02.4</td>
<td>4755</td>
</tr>
<tr>
<td>Poullakakis, Ioannis</td>
<td>ThB07.1</td>
<td>3966</td>
</tr>
<tr>
<td>Pouliquen, Mathieu</td>
<td>WeA22.5</td>
<td>791</td>
</tr>
<tr>
<td>Poulsen, Niels Kjalstad</td>
<td>FrB11.4</td>
<td>6983</td>
</tr>
<tr>
<td>Poupar, Eduardo</td>
<td>ThB16.6</td>
<td>4337</td>
</tr>
<tr>
<td>Pouryaha, Maryam</td>
<td>FrC01.1</td>
<td>7530</td>
</tr>
<tr>
<td>Poussot-Vassal, Charles</td>
<td>FrC02</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrC02.5</td>
<td>7590</td>
</tr>
<tr>
<td>Poveda, Jorge I.</td>
<td>ThA06.1</td>
<td>2980</td>
</tr>
<tr>
<td></td>
<td>ThA06.3</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>ThB06</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>ThB06.5</td>
<td>3954</td>
</tr>
<tr>
<td></td>
<td>FrA06</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA06.2</td>
<td>5838</td>
</tr>
<tr>
<td></td>
<td>FrB21.3</td>
<td>7352</td>
</tr>
<tr>
<td>Pradeliski, Bary S. R.</td>
<td>ThA19.2</td>
<td>3478</td>
</tr>
<tr>
<td>Prandini, Maria</td>
<td>ThB07</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>ThB07.3</td>
<td>3978</td>
</tr>
<tr>
<td></td>
<td>FrA22</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrA22.5</td>
<td>6461</td>
</tr>
<tr>
<td>Preciado, Victor M.</td>
<td>WeB07.3</td>
<td>1159</td>
</tr>
<tr>
<td></td>
<td>WeC24</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WeC24.1</td>
<td>2732</td>
</tr>
<tr>
<td></td>
<td>FrA06.4</td>
<td>5850</td>
</tr>
<tr>
<td>Prieur, Christophe</td>
<td>ThSP2</td>
<td>C</td>
</tr>
<tr>
<td>Prudiere, Alexandre</td>
<td>ThC22.4</td>
<td>2676</td>
</tr>
<tr>
<td></td>
<td>ThA26.2</td>
<td>3724</td>
</tr>
<tr>
<td></td>
<td>ThA26.3</td>
<td>*</td>
</tr>
<tr>
<td>Pruikprasert, Sasinee</td>
<td>WeB04.3</td>
<td>1050</td>
</tr>
<tr>
<td>Pucci, Daniele</td>
<td>FrA07</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>FrA07.5</td>
<td>5894</td>
</tr>
<tr>
<td>Puig, Vicenc</td>
<td>FrC23.6</td>
<td>8366</td>
</tr>
<tr>
<td>Punga, Elisabetta</td>
<td>FrC10.6</td>
<td>7887</td>
</tr>
<tr>
<td>Puthuvana Vinod, Abraham</td>
<td>WeC16.5</td>
<td>2467</td>
</tr>
<tr>
<td>Pylorof, Dimitrios</td>
<td>WeB18.4</td>
<td>1589</td>
</tr>
<tr>
<td>Pyrkyn, Antti</td>
<td>WeA18.6</td>
<td>648</td>
</tr>
<tr>
<td>Qi, Jie</td>
<td>WeC08.6</td>
<td>2169</td>
</tr>
<tr>
<td>Qi, Yang</td>
<td>FrC17.5</td>
<td>8136</td>
</tr>
<tr>
<td>Qin, Zhengyuan</td>
<td>ThC15.5</td>
<td>5252</td>
</tr>
<tr>
<td>Qiu, Daowen</td>
<td>FrB04.6</td>
<td>6736</td>
</tr>
<tr>
<td>Qiu, Li</td>
<td>ThB12.2</td>
<td>4161</td>
</tr>
<tr>
<td>Raffi, Tarek</td>
<td>WeC17.1</td>
<td>2479</td>
</tr>
<tr>
<td></td>
<td>WeC17.4</td>
<td>2497</td>
</tr>
<tr>
<td></td>
<td>ThA11.5</td>
<td>3202</td>
</tr>
<tr>
<td>Rajamani, Rajesh</td>
<td>WeA11.5</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>ThA02.4</td>
<td>2862</td>
</tr>
<tr>
<td></td>
<td>ThB02.2</td>
<td>3788</td>
</tr>
<tr>
<td>Rajawat, Ketan</td>
<td>WeC24.3</td>
<td>2745</td>
</tr>
<tr>
<td>Rajpurol, Tanmay</td>
<td>ThB21.6</td>
<td>4521</td>
</tr>
<tr>
<td>Rakhl, Alexander</td>
<td>ThA23.2</td>
<td>3623</td>
</tr>
<tr>
<td>Rakotondrabe, Micky</td>
<td>FrB07</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>FrB07</td>
<td>O</td>
</tr>
<tr>
<td>RamaSamy, Saravanakumar</td>
<td>FrA05.6</td>
<td>5826</td>
</tr>
<tr>
<td>Ramasubramaniam, Bhaskar</td>
<td>WeB25.2</td>
<td>1842</td>
</tr>
<tr>
<td>Ramaswamy, Kirthik R.</td>
<td>ThC22.1</td>
<td>5494</td>
</tr>
<tr>
<td></td>
<td>ThC22.5</td>
<td>5519</td>
</tr>
<tr>
<td>Ramazi, Pouria</td>
<td>WeC25.5</td>
<td>2796</td>
</tr>
<tr>
<td></td>
<td>FrB09.4</td>
<td>6912</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Roy, Spandan</td>
<td>WeA03.1</td>
<td>72</td>
</tr>
<tr>
<td>Roze, David</td>
<td>FrB08.6</td>
<td>6887</td>
</tr>
<tr>
<td>Rudkevich, Alexander</td>
<td>ThC05.5</td>
<td>4877</td>
</tr>
<tr>
<td>Ruf, Sebastian F.</td>
<td>WeB21.2</td>
<td>1692</td>
</tr>
<tr>
<td>Runacres, Mark C.</td>
<td>FrB22.4</td>
<td>7397</td>
</tr>
<tr>
<td>Rupenyan, Alisa</td>
<td>FrC07.1</td>
<td>7746</td>
</tr>
<tr>
<td>Rus, Daniela</td>
<td>ThB23.2</td>
<td>4569</td>
</tr>
<tr>
<td>Russo, Benjamin</td>
<td>FrA22.4</td>
<td>6455</td>
</tr>
<tr>
<td>Russo, Giovanni</td>
<td>WeC07.2</td>
<td>2108</td>
</tr>
<tr>
<td>Rutquist, Per</td>
<td>ThC14.1</td>
<td>5187</td>
</tr>
<tr>
<td>Ryu, Kunhee</td>
<td>WeC21.4</td>
<td>2640</td>
</tr>
<tr>
<td>Sanfelice, Ricardo G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandhu, Romeil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandoval, Rico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandberg, Henrik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sankaran, Mohammadreza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saggin, Fabricio</td>
<td>ThC14.2</td>
<td>5193</td>
</tr>
<tr>
<td>Saglam, Irmak</td>
<td>ThB23.5</td>
<td>4589</td>
</tr>
<tr>
<td>Sahaban, Dinuka</td>
<td>WeA16.5</td>
<td>567</td>
</tr>
<tr>
<td>Sahu, Anit Kumar</td>
<td>FrC23.4</td>
<td>8353</td>
</tr>
<tr>
<td>Said, Hazem</td>
<td>ThB11.4</td>
<td>4133</td>
</tr>
<tr>
<td>Saikumar, Nirangan</td>
<td>FrC12.5</td>
<td>7956</td>
</tr>
<tr>
<td>Sakamoto, Noboru</td>
<td>WeC15.4</td>
<td>2422</td>
</tr>
<tr>
<td>Sakcak, Basak</td>
<td>ThB07.3</td>
<td>3978</td>
</tr>
<tr>
<td>Sakurama, Kazunori</td>
<td>WeC25</td>
<td>4367</td>
</tr>
<tr>
<td>Salapaka, Murti V.</td>
<td>ThB22.4</td>
<td>4545</td>
</tr>
<tr>
<td>Salapaka, Srinivasa M.</td>
<td>ThB06.4</td>
<td>3948</td>
</tr>
<tr>
<td>Saldi, Naci</td>
<td>WeA09.6</td>
<td>317</td>
</tr>
<tr>
<td>Saleshghaffari, Hossein</td>
<td>ThC13.2</td>
<td>5156</td>
</tr>
<tr>
<td>Saleid, Steinar</td>
<td>FrA01.3</td>
<td>5654</td>
</tr>
<tr>
<td>Salton, Aurelio Tergolina</td>
<td>FrC12.4</td>
<td>7950</td>
</tr>
<tr>
<td>Salvador, Jose R.</td>
<td>FrC05.1</td>
<td>7671</td>
</tr>
<tr>
<td>Salzano, Davide</td>
<td>WeB01.1</td>
<td>927</td>
</tr>
<tr>
<td>Sampathia, Ajay Kumar</td>
<td>ThB04.6</td>
<td>3885</td>
</tr>
<tr>
<td>Samson, Claude</td>
<td>FrA07.3</td>
<td>5880</td>
</tr>
<tr>
<td>Sanai Dashti, Zhaohe Al Zahra</td>
<td>ThA25.2</td>
<td>3691</td>
</tr>
<tr>
<td>Sanchez, Claudia</td>
<td>FrC15.2</td>
<td>8042</td>
</tr>
<tr>
<td>Sandberg, Henrik</td>
<td>ThA20.2</td>
<td>3515</td>
</tr>
<tr>
<td>Schefler, Mattias</td>
<td>FrA01.5</td>
<td>5668</td>
</tr>
<tr>
<td>Schenato, Luca</td>
<td>WeC06.4</td>
<td>2084</td>
</tr>
<tr>
<td>Scherzer, Bruno</td>
<td>FrC21</td>
<td>4587</td>
</tr>
<tr>
<td>Scherzer, Carsten W.</td>
<td>FrA02.2</td>
<td>5686</td>
</tr>
<tr>
<td>Scherpen, Jaquellien M.A.</td>
<td>ThA05.5</td>
<td>2976</td>
</tr>
<tr>
<td>Schmid, Eva Julia</td>
<td>ThB05.5</td>
<td>3916</td>
</tr>
<tr>
<td>Schoellig, Angela P.</td>
<td>WeA23</td>
<td></td>
</tr>
<tr>
<td>Scholl, Michael</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scholten, Jan Jelmer</td>
<td>WeA23.1</td>
<td>803</td>
</tr>
<tr>
<td>Schön, Thomas (Bo)</td>
<td>WeA23.6</td>
<td>835</td>
</tr>
<tr>
<td>Saed, Ali H.</td>
<td>ThC06.2</td>
<td>4898</td>
</tr>
<tr>
<td>Scabin, Danica</td>
<td>WeA11</td>
<td>3493</td>
</tr>
<tr>
<td>Scampicchio, Anna</td>
<td>WeA23.4</td>
<td>822</td>
</tr>
<tr>
<td>Scarchetti, Giordano</td>
<td>ThA19</td>
<td>3503</td>
</tr>
<tr>
<td>Scardov, Luca</td>
<td>ThB15.4</td>
<td>4286</td>
</tr>
<tr>
<td>Scattolin, Riccardo</td>
<td>WeC23.5</td>
<td>2720</td>
</tr>
<tr>
<td>Schneid, Michael</td>
<td>FrC05.1</td>
<td>7671</td>
</tr>
<tr>
<td>Scholl, Jan Jelmer</td>
<td>WeA23.1</td>
<td>803</td>
</tr>
<tr>
<td>Scholl, Jan Jelmer</td>
<td>WeA23.6</td>
<td>835</td>
</tr>
<tr>
<td>Scholl, Jan Jelmer</td>
<td>WeA23.1</td>
<td>803</td>
</tr>
<tr>
<td>Scholl, Jan Jelmer</td>
<td>WeA23.6</td>
<td>835</td>
</tr>
</tbody>
</table>
Staal, Odd Martin ... FrA01.3 5654
Stamouli, Charalampia .. ThC20.1 5420
Stankovic, Milos S .. ThB20.3 4465
Stankovic, Srdjan S .. ThB20.3 4465
 Stark, Oliver .. WeA22.4 784
 Stavdahl, Øyvind .. FrA01.3 5654
 Stefan, Jeb ... ThB21.1 7345
 Stefan, Gianna ... WeB15.2 1462
 Stefanovitch, Alexei ... WeA21.1 728
 Steinberger, Martin ... ThC14.4 5206
 .. FrA10.5 6007
 .. FrC10.5 7881
 Stephens, Trevor .. WeC03.1 1951
 Stern, Raphael .. ThA10 C
-Stickan, Benjamin .. ThC15.1 5223
 Stocian, Florin .. WeC05.6 2060
 .. FrC15.5 8061
 Stoervogel, Anton A .. FrB20.2 7307
 Strecker, Timm .. ThC08.4 4984
 Strehe, Felix ... ThB25.2 4648
 Streif, Stefan ... FrA15.4 6189
 Strijbosch, Nard ... FrA24.6 6542
 Strom, Benjamin .. FrB22.3 7389
 Su, Rong ... WeB10 CC
 .. WeB10 O
 .. WeB10.1 1255
 .. WeC10 CC
 .. WeC10 O
 .. FrB04 C
 .. FrB04 C
 .. FrB04.5 6730
 .. FrC04 C
 .. FrC04 O
 .. FrC04.5 7659
 Subramanian, Jayakumar .. WeB19.4 1629
 Subramanian, Venkat Ram ThB22.4 4545
 Sultangazin, Alimzhan ... FrB17.5 7209
 Summers, Tyler H .. FrB05.1 6742
 .. FrB15.6 7140
 Sun, Chuangchuang ... ThC12.1 5113
 Sun, Chunyang .. WeB10.1 1255
 Sun, Deli ... ThB17.1 3854
 Sun, Jinao ... WeB25.4 1682
 Sun, Jing ... FrB03.5 6694
 Sun, Runhuan .. WeB18.6 1601
 Sun, Shiqing ... ThC06.6 4922
 Sun, Xi-Ming ... WeB06.1 1108
 .. ThC20.4 5438
 Sun, Yixin ... FrB07.5 6844
 Sun, Zhiyong .. WeB05 C
 .. WeB05.2 1083
 .. ThA20.3 3527
 .. ThC05.5 4877
 Sundar, Kaarthik .. FrC15.5 5368
 Sundaram, Shreyas .. ThC18.5 5374
 .. FrC09 C
 .. FrC09.5 7844
 .. FrC23.3 8347
 Surace, Simone Carlo .. WeA19.3 666
 Surroop, Dilshad ... WeA18.5 642
 Sutherland, Richard .. ThC15.2 5231
 Suttner, Raik .. ThA20.3 3521
 Suzuki, Atsushi ... ThB25.4 1856
 Sweeney, Shaun .. WeC07.2 2108
 Swenson, Brian .. ThA06.6 3018
 Swikir, Abdalla .. ThC12.3 5126
 Sylvestre, Mathieu ... WeC09.6 5032
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu, Yujing</td>
<td>ThC24.1</td>
</tr>
<tr>
<td>Wu, Xiaotai</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Min</td>
<td>ThA14.6</td>
</tr>
<tr>
<td>Wu, Junfeng</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Dongqi</td>
<td>...</td>
</tr>
<tr>
<td>Wout, Daan</td>
<td>ThA09.5</td>
</tr>
<tr>
<td>Woolsey, Craig</td>
<td>ThB26.1</td>
</tr>
<tr>
<td>Wouter, Herbert</td>
<td>ThB08.1</td>
</tr>
<tr>
<td>Werner, Lucien</td>
<td>FrB04.4</td>
</tr>
<tr>
<td>Werner, Adam</td>
<td>...</td>
</tr>
<tr>
<td>Westenbroek, Tyler</td>
<td>...</td>
</tr>
<tr>
<td>Wetzing, Maximilian</td>
<td>ThC24.2</td>
</tr>
<tr>
<td>Weyher, Erik</td>
<td>...</td>
</tr>
<tr>
<td>Weyher, Erik</td>
<td>...</td>
</tr>
<tr>
<td>Wout, Daan</td>
<td>ThB26.5</td>
</tr>
<tr>
<td>Wu, Dongju</td>
<td>ThC24.2</td>
</tr>
<tr>
<td>Wu, Dongqi</td>
<td>ThB24.2</td>
</tr>
<tr>
<td>Wu, Guojun</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Junfeng</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Maxwell</td>
<td>ThC24.3</td>
</tr>
<tr>
<td>Wu, Min</td>
<td>ThA15.3</td>
</tr>
<tr>
<td>Wu, Re-Bing</td>
<td>ThB24.2</td>
</tr>
<tr>
<td>Wu, Shuangshuang</td>
<td>ThB24.2</td>
</tr>
<tr>
<td>Wu, Xiaotai</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Yan</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Yongxin</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Yuchi</td>
<td>...</td>
</tr>
<tr>
<td>Wu, Yujin</td>
<td>...</td>
</tr>
<tr>
<td>Wulff, Kai</td>
<td>...</td>
</tr>
<tr>
<td>Wunsch, Donald C</td>
<td>...</td>
</tr>
<tr>
<td>Xie, Weigu</td>
<td>ThC25.4</td>
</tr>
<tr>
<td>Xie, Jingkang</td>
<td>ThC24.1</td>
</tr>
<tr>
<td>Xie, Mingling</td>
<td>...</td>
</tr>
<tr>
<td>Xie, Junfei</td>
<td>...</td>
</tr>
<tr>
<td>Xie, Le</td>
<td>...</td>
</tr>
<tr>
<td>Xie, Lihua</td>
<td>...</td>
</tr>
<tr>
<td>Xie, Shengwen</td>
<td>ThC07.4</td>
</tr>
<tr>
<td>Xin, Ran</td>
<td>ThC23.4</td>
</tr>
<tr>
<td>Xin, Xin</td>
<td>ThA07</td>
</tr>
<tr>
<td>Xiong, Junlin</td>
<td>ThC08.3</td>
</tr>
<tr>
<td>Xiong, XIAOBIN</td>
<td>ThA07.4</td>
</tr>
<tr>
<td>Xu, Demin</td>
<td>ThA05.7</td>
</tr>
<tr>
<td>Xu, Fang</td>
<td>ThA04.5</td>
</tr>
<tr>
<td>Xu, Hsiao</td>
<td>ThA09.2</td>
</tr>
<tr>
<td>Xu, Jiapeng</td>
<td>ThB06.5</td>
</tr>
<tr>
<td>Xu, Jie</td>
<td>...</td>
</tr>
<tr>
<td>Xu, Jun</td>
<td>...</td>
</tr>
<tr>
<td>Xu, Min</td>
<td>ThA11.5</td>
</tr>
<tr>
<td>Xu, Xiangru</td>
<td>ThA18.3</td>
</tr>
<tr>
<td>Xu, Yunjian</td>
<td>ThC09.5</td>
</tr>
<tr>
<td>Xu, Zhe</td>
<td>ThC02.5</td>
</tr>
<tr>
<td>Xu, Zikai</td>
<td>ThC01.6</td>
</tr>
<tr>
<td>Xue, Mengran</td>
<td>ThC22.5</td>
</tr>
<tr>
<td>Xue, Ting</td>
<td>ThC04.4</td>
</tr>
<tr>
<td>Xue, Wenchao</td>
<td>ThC03</td>
</tr>
<tr>
<td>Xue, Yu</td>
<td>...</td>
</tr>
<tr>
<td>Yabo, Agustin</td>
<td>...</td>
</tr>
<tr>
<td>Yagoh, Mohamed</td>
<td>ThA06.6</td>
</tr>
<tr>
<td>Yahya, Olfa</td>
<td>...</td>
</tr>
<tr>
<td>Yamalova, Diana</td>
<td>ThC04.1</td>
</tr>
<tr>
<td>Yamamoto, Naoki</td>
<td>ThA12.2</td>
</tr>
<tr>
<td>Yamazaki, Taiga</td>
<td>ThA07.5</td>
</tr>
<tr>
<td>Yamashita, Atsushi</td>
<td>ThB06.4</td>
</tr>
<tr>
<td>Yamane, Joseph Julien</td>
<td>...</td>
</tr>
<tr>
<td>Yan, Chuan</td>
<td>ThB03.9</td>
</tr>
<tr>
<td>Yan, Jian</td>
<td>...</td>
</tr>
<tr>
<td>Yan, Rui</td>
<td>ThB09.5</td>
</tr>
<tr>
<td>Yan, Yamin</td>
<td>ThC21.1</td>
</tr>
<tr>
<td>Yan, Yuyue</td>
<td>ThA09.3</td>
</tr>
<tr>
<td>Yang, Guotao</td>
<td>ThB04.3</td>
</tr>
<tr>
<td>Yang, Guxion</td>
<td>ThB09.3</td>
</tr>
<tr>
<td>Yang, Haibo</td>
<td>ThA06.1</td>
</tr>
<tr>
<td>Yang, Insoon</td>
<td>ThA24.2</td>
</tr>
<tr>
<td>Yang, Jiheung</td>
<td>...</td>
</tr>
<tr>
<td>Yang, Jinping</td>
<td>ThB19.5</td>
</tr>
<tr>
<td>Yang, Jingkai</td>
<td>ThB04.6</td>
</tr>
<tr>
<td>Yang, Kai</td>
<td>ThC24.4</td>
</tr>
<tr>
<td>Yang, Lin</td>
<td>ThC24.1</td>
</tr>
<tr>
<td>Yang, Lining</td>
<td>...</td>
</tr>
<tr>
<td>Yang, Min</td>
<td>...</td>
</tr>
<tr>
<td>Yang, Ming</td>
<td>...</td>
</tr>
<tr>
<td>Name</td>
<td>Code</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>ZHANG, JIAFENG</td>
<td>WeC04.1</td>
</tr>
<tr>
<td>ZHU, Minghui</td>
<td>WeA07.2</td>
</tr>
<tr>
<td>ZHANG, Jian</td>
<td>ThA04.1</td>
</tr>
<tr>
<td>ZHU, Yang</td>
<td>ThB25.1</td>
</tr>
<tr>
<td>ZHANG, Jin</td>
<td>WeA02.6</td>
</tr>
<tr>
<td>ZHU, Yixian</td>
<td>ThB10.3</td>
</tr>
<tr>
<td>ZHANG, Jing</td>
<td>WeC08.6</td>
</tr>
<tr>
<td>ZHU, Yuting</td>
<td>FrB04.5</td>
</tr>
<tr>
<td>ZHANG, Jingzhao</td>
<td>WeB16.2</td>
</tr>
<tr>
<td>ZHUANG, Weihua</td>
<td>FrA05.6</td>
</tr>
<tr>
<td>ZHANG, Jinke</td>
<td>FrC24.6</td>
</tr>
<tr>
<td>ZHUK, Sergiy</td>
<td>WeB08.4</td>
</tr>
<tr>
<td>ZHANG, Jiayang</td>
<td>ThA04.1</td>
</tr>
<tr>
<td>ZHU, Bin</td>
<td>WeB10.6</td>
</tr>
<tr>
<td>ZHANG, Kaiqing</td>
<td>ThC23</td>
</tr>
<tr>
<td>ZHU, Bin</td>
<td>WeB14.3</td>
</tr>
<tr>
<td>ZHANG, Kuize</td>
<td>WeA04.1</td>
</tr>
<tr>
<td>ZHAN, Yaoping</td>
<td>WeA15.6</td>
</tr>
<tr>
<td>ZHANG, Ping</td>
<td>FrA04.3</td>
</tr>
<tr>
<td>ZIPS, Patrik</td>
<td>ThB15.2</td>
</tr>
<tr>
<td>ZHANG, Qian</td>
<td>WeA14.6</td>
</tr>
<tr>
<td>ZIVAN, Yigal</td>
<td>FrC11.1</td>
</tr>
<tr>
<td>ZHANG, Wei</td>
<td>WeC07.1</td>
</tr>
<tr>
<td>ZLOTNIK, Anatoly</td>
<td>ThC05.5</td>
</tr>
<tr>
<td>ZHANG, Weidong</td>
<td>WeC05.1</td>
</tr>
<tr>
<td>ZOCCA, Alessandro</td>
<td>ThB04</td>
</tr>
<tr>
<td>ZHANG, wenhan</td>
<td>ThA11.5</td>
</tr>
<tr>
<td>ZOPPELLO, Marta</td>
<td>FrA15.5</td>
</tr>
<tr>
<td>ZHANG, Xian</td>
<td>WeC01.6</td>
</tr>
<tr>
<td>ZORZI, Mattia</td>
<td>ThC11</td>
</tr>
<tr>
<td>ZHANG, Xin</td>
<td>FrA06.1</td>
</tr>
<tr>
<td>ZOU, Jianxiao</td>
<td>ThA04.1</td>
</tr>
<tr>
<td>ZHANG, Xinkai</td>
<td>WeA06.3</td>
</tr>
<tr>
<td>ZOU, Suli</td>
<td>ThB20.1</td>
</tr>
<tr>
<td>ZHANG, Xu</td>
<td>WeA14.6</td>
</tr>
<tr>
<td>ZOUGGAR, Small</td>
<td>FrC05.6</td>
</tr>
<tr>
<td>ZHANG, Ye</td>
<td>ThB04.1</td>
</tr>
<tr>
<td>ZUAZUA, Enrique</td>
<td>WeC19.4</td>
</tr>
<tr>
<td>ZHANG, Yi</td>
<td>WeA07.2</td>
</tr>
<tr>
<td>ZUFFEREY, Damien</td>
<td>FrA17.3</td>
</tr>
<tr>
<td>ZHANG, Yicheng</td>
<td>WeB10.1</td>
</tr>
<tr>
<td>ZUO, wenyu</td>
<td>ThB01.1</td>
</tr>
<tr>
<td>ZHANG, Yingchen</td>
<td>FrC25.6</td>
</tr>
<tr>
<td>ZURAKOWSKI, Ryan</td>
<td>FrA01.4</td>
</tr>
<tr>
<td>ZHANG, Yuan</td>
<td>ThB01.5</td>
</tr>
<tr>
<td>ZWART, Hans</td>
<td>FrA08.4</td>
</tr>
<tr>
<td>ZHANG, Yue</td>
<td>WeA10.2</td>
</tr>
<tr>
<td>ZHAN, Muhan</td>
<td>ThB24.6</td>
</tr>
<tr>
<td>ZHANG, Zhe</td>
<td>WeA02.3</td>
</tr>
<tr>
<td>ZHAO, Longtong</td>
<td>ThC25.1</td>
</tr>
<tr>
<td>ZHANG, Zhe</td>
<td>WeA02.3</td>
</tr>
<tr>
<td>ZHAO, Di</td>
<td>FrB16.2</td>
</tr>
<tr>
<td>ZHANG, Zhuhua</td>
<td>WeA04.2</td>
</tr>
<tr>
<td>ZHAO, Guoxiang</td>
<td>WeA07.2</td>
</tr>
<tr>
<td>ZHANG, Chunming</td>
<td>ThC04.1</td>
</tr>
<tr>
<td>ZHAO, Jiabao</td>
<td>ThA21.3</td>
</tr>
<tr>
<td>ZHAN, Xu</td>
<td>FrB14.5</td>
</tr>
<tr>
<td>ZHAO, Liuhui</td>
<td>WeB10.2</td>
</tr>
<tr>
<td>ZHENG, Jiacheng</td>
<td>WeB10.1</td>
</tr>
<tr>
<td>ZHAO, Longtong</td>
<td>ThC03.3</td>
</tr>
<tr>
<td>ZHAO, Xiyong</td>
<td>ThB24.6</td>
</tr>
<tr>
<td>ZHAO, Muhan</td>
<td>ThA12.2</td>
</tr>
<tr>
<td>ZHENG, Jun</td>
<td>ThC06.5</td>
</tr>
<tr>
<td>ZHENG, Zhipeng</td>
<td>FrB02.4</td>
</tr>
<tr>
<td>ZHENIROWSKY, Maksym</td>
<td>ThB24.3</td>
</tr>
<tr>
<td>ZHENG, Jinchuan</td>
<td>ThB21.4</td>
</tr>
<tr>
<td>ZHENG, Zhipeng</td>
<td>FrB02.4</td>
</tr>
<tr>
<td>ZHONG, Yisheng</td>
<td>ThB09.5</td>
</tr>
<tr>
<td>ZHONG, Yaofeng Desmond</td>
<td>WeB21.4</td>
</tr>
<tr>
<td>ZHOU, Bin</td>
<td>WeA02.3</td>
</tr>
<tr>
<td>ZHENG, Wei</td>
<td>WeC07.1</td>
</tr>
<tr>
<td>ZHOU, Fengyu</td>
<td>FrA16.4</td>
</tr>
<tr>
<td>ZHENG, Wei</td>
<td>WeC07.1</td>
</tr>
<tr>
<td>ZHOU, Fengyu</td>
<td>FrA16.4</td>
</tr>
<tr>
<td>ZHOU, Jing</td>
<td>WeB03.5</td>
</tr>
<tr>
<td>ZHU, Bin</td>
<td>ThC11.3</td>
</tr>
<tr>
<td>ZHOU, Kemin</td>
<td>FrA05.5</td>
</tr>
<tr>
<td>ZHU, Bin</td>
<td>ThC11.3</td>
</tr>
<tr>
<td>ZHOU, Mengjie</td>
<td>WeB09.4</td>
</tr>
<tr>
<td>ZHU, Sijing</td>
<td>WeB23.5</td>
</tr>
<tr>
<td>ZHOU, Tong</td>
<td>ThA21</td>
</tr>
<tr>
<td>ZHU, Siqi</td>
<td>WeB23.5</td>
</tr>
<tr>
<td>ZHU, Hao</td>
<td>ThA21</td>
</tr>
<tr>
<td>ZHU, Zebo</td>
<td>FrC11</td>
</tr>
<tr>
<td>ZHU, Zejian</td>
<td>WeB09.2</td>
</tr>
<tr>
<td>ZHU, Zejian</td>
<td>WeB09.2</td>
</tr>
</tbody>
</table>
CDC 2019 Keyword Index

<table>
<thead>
<tr>
<th>C</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adaptive control</td>
</tr>
<tr>
<td>FrA19.3, FrA25.3, FrB06.6, FrB09.3, FrB12.4, FrB13.4, FrB14.5, FrB20.2, FrC10.3, FrC17.6, FrC20.4, FrC21.1, ThA03.1, ThA03.2, ThB14.1, ThB23.1, ThB23.3, ThC23.1, WeA03.1, WeA03.2, WeA03.3, WeA03.4, WeA03.5, WeA03.6, WeA13.4, WeA20.1, WeB02.3, WeB02.6, WeB03.1, WeB03.2, WeB03.3, WeB03.4, WeB03.5, WeB03.6, WeB16.1, WeB18.6, WeB21.3, WeC03.1, WeC03.2, WeC03.3, WeC03.4, WeC03.5, WeC03.6, WeC05.3, WeC15.6</td>
<td>see also Adaptive Systems</td>
</tr>
<tr>
<td></td>
<td>Aerospace</td>
</tr>
<tr>
<td>FrA07.1, FrA19.1, FrB18.1, FrB20.4, FrC10.6, FrC11.1, FrC11.3, FrC20.2, FrC20.3, ThA25.4, ThC04.4, ThC07.1, ThC07.2, ThC07.3, ThC07.4, ThC07.5, ThC07.6, ThC15.2, WeA13.1, WeB03.1, WeB14.1, WeC07.5, WeC07.6, WeC18.3, WeC19.3, WeC19.6</td>
<td>see also Control Applications</td>
</tr>
<tr>
<td></td>
<td>Agents-based systems</td>
</tr>
<tr>
<td>FrA09.1, FrA12.1, FrA21.3, FrA21.6, FrA26.4, FrB09.4, FrB12.6, FrB23.3, FrC09.3, FrC20.4, FrC20.5, FrC23.4, ThA06.4, ThA06.6, ThA09.3, ThA09.4, ThA09.6, ThA19.2, ThA20.1, ThA20.4, ThA21.3, ThA22.1, ThA22.5, ThA22.5, ThA25.4, ThA25.5, ThB03.6, ThB05.3, ThB09.1, ThB09.6, ThB13.1, ThC03.5, ThC09.6, ThC12.2, ThC18.1, ThC20.4, ThC23.6, ThC25.1, ThC25.2, WeA02.4, WeA11.1, WeA24.5, WeA25.1, WeA25.2, WeA25.3, WeA25.4, WeA25.5, WeA25.6, WeB11.5, WeB11.6, WeB21.4, WeB25.1, WeB25.2, WeB25.3, WeB25.4, WeB25.5, WeB25.6, WeC14.4, WeC20.2, WeC20.3, WeC25.1, WeC25.2, WeC25.3, WeC25.4, WeC25.5, WeC25.6</td>
<td>see also Control Applications</td>
</tr>
<tr>
<td></td>
<td>Air traffic management</td>
</tr>
<tr>
<td></td>
<td>FrA02.5, FrA12.6, FrA14.2, FrA18.1, FrA18.4, FrA25.5, FrB06.4, FrB10.5, FrB12.5, FrB14.3, FrB20.6, FrC01.6, FrC11.4, FrC15.1, FrC15.2</td>
</tr>
<tr>
<td></td>
<td>Automata</td>
</tr>
<tr>
<td>FrB04.1, FrB04.2, FrB04.5, FrB04.6, FrC04.1, FrC04.2, FrC04.3, FrC04.4, FrC04.5, FrC04.6, ThC12.6, ThC17.6, ThC18.2, WeA04.1, WeA07.3, WeB04.3, WeB04.4, WeB04.6, WeC04.2, WeC04.4, WeC04.5</td>
<td>see also Discrete Event Systems</td>
</tr>
<tr>
<td></td>
<td>Asexual systems</td>
</tr>
<tr>
<td>FrB03.1, FrB03.2, FrB03.3, FrB03.4, FrB03.5, FrC03.1, FrC03.2, FrC03.3, FrC03.4, FrC03.5, FrC03.6, ThC16.2, WeA23.2, WeB10.5, ThC16.2, WeA23.2, ThC11.3</td>
<td>see also Control Applications</td>
</tr>
<tr>
<td></td>
<td>Autonomous robots</td>
</tr>
<tr>
<td>FrA03.2, FrA05.2, FrA17.6, FrC14.6, FrC20.2, FrC22.2, FrC23.2, ThB03.1, ThB03.2, ThB03.3, ThB09.5, ThB15.5, ThB17.1, ThC17.1, WeA07.1, WeA07.2, WeA07.3, WeA07.4, WeA07.5, WeA07.6, WeB07.1, WeC07.5</td>
<td>see also Control Applications</td>
</tr>
<tr>
<td></td>
<td>Bacteria</td>
</tr>
<tr>
<td>FrA03.1, FrA03.3, FrA03.6, FrA11.1, FrA17.5, FrB06.1, FrB09.4, FrB12.5, FrB12.6, FrB20.4, FrC13.6, FrC20.1, FrC20.3, ThA01.3, ThA16.5, ThA21.5, ThA25.2, ThA25.3, ThA25.5, ThB03.5, ThB03.5, ThB03.6, ThB03.6, ThB15.5, ThB18.4, ThB23.6, ThC03.1, ThC03.2, ThC03.3, ThC03.4, ThC03.5, ThC03.6, ThC17.1, ThC20.3, WeA04.5, WeA05.6, WeA07.5, WeA23.1, WeA24.3, WeA25.5, WeA25.6, WeB15.6, WeB25.5, WeC06.4, WeC10.3, WeC11.1, WeC11.4, WeC14.3, WeC25.1, WeC25.2, WeC25.4, WeC25.5</td>
<td>see also Control Applications</td>
</tr>
<tr>
<td></td>
<td>Behavioral systems</td>
</tr>
<tr>
<td>ThC09.2, WeC23.1</td>
<td>see also Linear Systems</td>
</tr>
<tr>
<td></td>
<td>Biological systems</td>
</tr>
<tr>
<td>FrA01.4, FrB01.4, FrC16.6, FrC15.3, FrC15.4, FrC15.5, FrC15.6, ThA18.1, ThA20.3, ThB14.2, ThC01.5, WeA09.4, WeA12.5, WeA14.3, WeA15.1, WeA15.2, WeB05.1, WeB07.3, WeB14.3, WeB15.2, WeB15.3, WeC15.4, WeC18.2, WeC18.5, WeB04.1, WeB04.2, WeB04.5, WeB04.6, FrC04.3, FrC04.4, FrC04.5, FrC04.6, ThC12.6, ThC17.6, ThC18.2, WeA04.1, WeA07.3, WeB04.3, WeB04.4, WeB04.6, WeC04.2, WeC04.4, WeC04.5</td>
<td>see also Control Applications</td>
</tr>
</tbody>
</table>
Control over communications
WeC04.5, WeC06.6
FrA04.3, FrA21.1, FrB21.5,
FrC21.5, FrC23.2, ThB04.6,
ThB12.1, ThB12.2, ThB12.4,
ThB12.6, ThC21.2, WeA20.4,
WeB20.2, WeB20.6, WeC06.4,
WeC20.1
ThA06.5, WeA20.6

See also Computational Methods
WeB02.5

FrB20.6, FrB24.0, FrB25.0,
FrC03.3, FrC01.0, FrC20.0,
FrC20.3, FrC20.4, FrC20.5,
FrC20.6, ThA03.1, ThA10.4,
ThA20.5, ThA25.1, ThB03.4,
ThB03.6, ThB09.5, ThB12.4,
ThB14.5, ThB20.2, ThB20.3,
ThB20.4, ThB20.6, ThB21.4,
ThB24.3, ThC03.2, ThC10.2,
ThC20.1, ThC20.2, ThC20.4,
ThC23.6, ThC24.1, WeA05.6,
WeA07.2, WeA10.3, WeA20.5,
WeA25.1, WeA25.4, WeA25.6,
WeB10.2, WeB17.4, WeC06.4,
WeC06.6, WeC10.2, WeC25.1,
WeC25.3

D

Decentralized control
FrC20.6, FrC25.1, FrC25.5,
ThA02.5, ThA08.5, ThB25.1,
ThB25.2, ThB25.3, ThB25.4,
ThB25.5, ThB25.6, ThC06.2,
ThC09.5, ThC23.5, WeA09.1,
WeA25.1, WeB05.3, WeB05.5,
WeB06.3, WeB09.2, WeB09.3,
WeC05.5

Delay systems
FrA15.5, FrA24.5, FrC08.1,
FrC21.3, FrC24.2, ThB02.1,
ThB20.1, ThB23.4, ThC08.1,
ThC08.6, ThC14.5, WeA02.1,
WeA02.2, WeA02.3, WeA02.4,
WeA02.5, WeA02.6, WeA08.1,
WeA17.6, WeA18.1, WeB02.1,
WeB02.2, WeB02.3, WeB02.4,
WeB02.5, WeB02.6, WeB10.3,
WeC01.6, WeC08.3, WeC21.3

See also Distributed Parameter Systems

Differential-algebraic systems
FrB08.2, FrC08.5, WeA17.5,
WeB02.5

Direct adaptive control
FrA10.5, FrB06.2, ThA08.2,
ThA15.1, ThB24.1, WeA03.6,
WeB05.2

See also Adaptive Systems

Discrete event systems
FrB04.1, FrB04.2, FrB04.3,
FrB04.4, FrB04.5, FrB04.6,
FrC04.1, FrC04.2, FrC04.4,
FrC04.5, FrC04.6, ThB12.6,
ThC17.4, ThC18.2, WeB04.1,
WeB04.2, WeB04.3, WeB04.4,
WeB04.5, WeB04.6, WeC04.1,
WeC04.3, WeC04.4, WeC04.5,
WeC04.6, WeC19.4, WeC20.2,
WeC20.4

See also Discrete Event Systems,

Distributed control
FrA03.2, FrA06.3, FrA06.6,
FrA09.2, FrA12.1, FrA20.1,
FrA20.3, FrA20.4, FrA20.5,
FrA25.3, FrB02.4, FrB03.4,
FrB21.2, FrB23.5, FrB25.4,
FrC03.3, FrC09.4, FrC17.6,
FrC20.5, FrC21.1

Distributed parameter systems
FrC23.4, FrC23.6, ThA08.5,
ThA13.4, ThA14.4, ThA20.1,
ThA20.2, ThA20.3, ThA20.4,
ThB08.2, ThB08.3, ThB08.4,
ThB08.5, ThB08.6, ThB15.1,
ThC08.1, ThC08.2, ThC08.3,
ThC08.4, ThC08.5, ThC08.6,
ThC24.5, ThC25.3, WeA08.1,
WeA08.2, WeA08.3, WeA08.4,
WeA08.5, WeA17.2, WeA18.1,
WeB08.1, WeB08.2, WeB08.3,
WeB08.4, WeB08.5, WeB08.6,
WeB22.1, WeC08.2, WeC08.3,
WeC08.6, WeC12.5, WeC24.4

See also Distributed Parameter Systems, Delay systems, Flexible structures, Fluid flow systems

E

Electrical machine control
FrA01.5, FrC10.3, WeA18.5,
WeA18.6, WeC02.4, WeC05.1

Embedded systems
WeA05.2

Emerging control applications
FrA07.4, ThA13.3, ThC05.5,
ThC21.4, ThC24.3, WeA04.6,
WeA07.4, WeA08.4, WeB11.4,
WeB16.4, WeC11.3

Energy systems
FrB08.2, FrB10.2, FrB15.2,
FrB16.5, FrC06.6, FrC25.2,
FrA05.6, FrA08.4, ThA12.1,
ThA12.2, ThA13.4, ThB13.6,
ThB25.2, ThC05.1, ThC05.2,
ThC05.3, ThC05.4, ThC05.5,
ThC05.6, ThC19.1, ThC24.3,
WeB14.3, WeC16.4

Estimation
FrA01.1, FrA01.2, FrA01.3,
FrA08.2, FrA11.1, FrA11.2,
<table>
<thead>
<tr>
<th>Identification</th>
<th>FrA18.3, FrA18.4, FrA18.5, FrA18.6, FrB18.1, FrB18.2, FrB18.3, FrB18.4, FrB18.5, FrB18.6, FrB21.3, FrC13.3, FrC18.3, ThA01.4, ThA06.3, ThA07.4, ThA08.6, ThA13.2, ThA13.6, ThB06.5, ThB15.3, ThB17.1, ThC01.6, ThC17.3, ThC20.2, WeA07.3, WeA15.4, WeA19.5, WeB14.1, WeB15.5, WeB17.5, WeB20.3, WeC01.4, WeC07.3, WeC10.3, WeC13.5, WeC13.6, WeC16.1</th>
<th>See also Intelligent systems, Embedded systems, Formal Verification/Synthesis, Quantized systems, Stability of hybrid systems, Switched systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification for control</td>
<td>FrA01.1, FrA22.4, FrA25.2, FrA25.6, FrB02.1, FrB11.2, FrB11.3, FrB16.2, FrB16.4, FrB25.3, FrC01.5, FrC11.2, FrC16.6, FrC25.6, ThA11.2, ThA12.2, ThA17.6, ThA22.1, ThA22.2, ThA22.3, ThA22.4, ThA23.6, ThA24.3, ThB01.2, ThB02.5, ThB11.6, ThB22.1, ThB22.2, ThB22.3, ThB22.4, ThC02.1, ThC02.4, ThC11.4, ThC19.6, ThC22.1, ThC22.2, ThC22.3, ThC22.4, ThC22.5, WeA01.4, WeA22.1, WeA22.2, WeA22.3, WeA22.4, WeA22.5, WeA22.6, WeB17.1, WeB22.1, WeB22.2, WeB22.3, WeB22.4, WeB22.5, WeB22.6, WeB24.4, WeC11.2, WeC11.5, WeC22.1, WeC22.2, WeC22.3, WeC22.4, WeC22.5, WeC22.6, WeC17.4, WeC24.3, FrC24.4, ThA05.2, ThA22.5, ThA22.6, ThA26.5, ThB04.1, WeA03.3, WeA23.4, WeA23.6, WeB23.4, WeC03.1, WeC03.5, WeC23.4, ThC11.4</td>
<td>See also Adaptive Systems</td>
</tr>
<tr>
<td>Indirect adaptive control</td>
<td>See also Adaptive Systems</td>
<td></td>
</tr>
<tr>
<td>Information technology systems</td>
<td>FrA13.5, WeC09.1</td>
<td>See also Control Applications, Information theory and control</td>
</tr>
<tr>
<td>Information theory and control</td>
<td>FrA04.1, FrA09.6, FrA13.5, FrB01.2, FrB17.3, FrB17.6, FrC19.2, ThA04.3, ThB12.6, ThC09.3, WeC15.6, WeC21.6</td>
<td>See also Control Applications, Intelligent systems, Iterative learning control</td>
</tr>
<tr>
<td>Intelligent systems</td>
<td>FrC13.6, WeA10.4, WeC09.2, WeC10.1, WeC25.2</td>
<td>See also Intelligent Systems, Linear parameter-varying systems, Linear systems</td>
</tr>
<tr>
<td>Iterative learning control</td>
<td>FrA19.3, FrA24.1, FrA24.2, FrA24.3, FrA24.4, FrA24.5, FrA24.6, FrB07.3, FrB24.1, FrB24.2, FrB24.3, FrB24.4, FrB24.5, FrB24.6, ThA03.4, ThA24.5, ThA26.2, ThB23.5, ThB24.5, ThC23.1, ThC24.2, ThC24.3, ThC24.4, ThC24.5, ThC24.6, WeA05.1, WeA23.3, WeA23.5, WeC03.5, WeC08.4, WeC23.2, WeC23.4</td>
<td>See also Linear systems</td>
</tr>
<tr>
<td>Kalman filtering</td>
<td>FrA01.3, FrA09.5, FrA11.4, FrB11.4, FrB11.6, FrB16.1, FrC06.2, FrC09.3, FrC11.1, FrC11.3, FrC11.6, FrC12.4, ThA02.1, ThA11.6, ThB05.1, ThB05.2, ThB05.4, ThB05.5, ThB05.6, ThB11.4, ThC11.6, WeA11.3, WeA11.4, WeA11.6, WeA19.4, WeA19.6, WeB18.5, WeB24.3, WeC21.4, WeC23.3</td>
<td></td>
</tr>
<tr>
<td>Learning</td>
<td>FrA19.4, FrB06.4, FrB06.6, FrB09.3, FrB09.5, FrB21.1, FrB24.1, FrC05.1, ThA13.1, ThA13.2, ThA23.3, ThA23.5, ThA26.1, ThA26.2, ThA26.5, ThB11.1, ThB23.3, ThB24.5, ThC09.1, ThC09.6, ThC23.3, WeA20.1, WeA24.1, WeA24.2, WeA24.3, WeA24.4, WeA24.5, WeA24.6, WeB03.2, WeB11.1, WeB13.1, WeB19.4, WeB22.4, WeB24.2, WeC09.3, WeC16.3, WeC24.1, WeC24.2, WeC24.3, WeC24.5</td>
<td></td>
</tr>
<tr>
<td>Linear parameter-varying systems</td>
<td>FrA02.1, FrA18.5, FrB13.3, FrC08.4, ThA02.2, ThA04.5, ThA11.3, ThB02.1, ThB02.2, ThB02.3, ThB02.4, ThB02.5, ThB25.3, ThC19.4, WeA10.4, WeC17.1</td>
<td></td>
</tr>
<tr>
<td>Linear systems</td>
<td>FrA02.2, FrA02.3, FrA02.4, FrA02.5, FrA02.6, FrA08.3, FrA12.3, FrA17.1, FrA18.3, FrA18.4, FrA24.1, FrA24.2, FrB02.1, FrB02.2, FrB02.3, FrB02.4, FrB02.5, FrB05.2, FrB05.3, FrB13.6, FrB17.6, FrB20.1, FrB24.5, FrC02.1, FrC02.5, FrC05.6, FrC06.3, FrC08.1, FrC08.6, FrC13.3</td>
<td></td>
</tr>
</tbody>
</table>
Lyapunov methods

LMIs

See also Computational Methods

Lyapunov methods

Materials processing

Mean field games

Mechatronics

MEMs and Nano systems

Metabolic systems

Model Validation

Model/Controller reduction
ThC10.5, WeA22.1
FrA01.2, FrA01.4, FrA22.2,
FrC06.6, FrC08.2, FrC12.2,
ThA03.3, ThA04.6, ThA05.2,
ThA10.2, ThA22.6, ThB01.1,
ThB01.4, ThB08.1, ThB09.3,
ThC01.1, ThC01.5, ThC02.4,
ThC05.5, ThC10.5, ThC15.6,
ThC11.3, ThC15.1, WeA01.6,
WeA09.3, WeA10.1, WeA15.3,
WeA16.5, WeA22.3, WeB02.1,
WeB08.1, WeB10.3, WeB12.5,
WeB22.3, WeC07.1, WeC22.3,
WeC22.6

Network analysis and control
FrA12.3, FrA12.5, FrA16.4,
FrA20.2, FrA21.6, FrB09.1,
FrB09.5, FrB15.6, FrB16.6,
FrB21.3, FrB21.4, FrC08.3,
FrC23.1, FrC23.5, ThA06.4,
ThA07.5, ThA20.3, ThA21.1,
ThA21.2, ThB01.1, ThB01.5,
ThB18.1, ThB18.6, ThB21.3,
ThB21.5, ThB22.2, ThB22.4,
ThB22.5, ThB22.6, ThB23.5,
ThC01.1, ThC01.3, ThC02.6,
ThC10.1, ThC10.2, ThC10.5,
ThC10.6, ThC21.1, ThC21.3,
ThC22.2, ThC22.4, ThC22.6,
ThC23.3, ThC25.1, ThC25.2,
WeA06.1, WeA21.1, WeA21.2,
WeA21.3, WeA21.4, WeA21.5,
WeA21.6, WeB05.2, WeB06.6,
WeB09.6, WeB21.1, WeB21.2,
WeB21.3, WeB21.4, WeB21.5,
WeB21.6, WeC06.3, WeC06.6,
WeC11.5

Networked control systems
FrA02.4, FrA03.5, FrA06.6,
FrA20.2, FrA20.4, FrA21.1,
FrA21.2, FrA21.3, FrA21.4,
FrA21.5, FrA21.6, FrA23.1,
FrA24.6, FrB02.3, FrB04.4,
FrB04.6, FrB06.3, FrB10.6,
FrB17.1, FrB17.2, FrB17.3,
FrB17.4, FrB17.5, FrB17.6,
FrB20.6, FrB21.1, FrB21.2,
FrB21.3, FrB21.4, FrB21.5,
FrB21.6, FrB23.2, FrB23.3,
FrB25.1, FrC05.3, FrC08.3,
FrC09.1, FrC10.5, FrC18.3,
FrC21.1, FrC21.2, FrC21.3,
FrC21.4, FrC21.5, FrC21.6,
FrC23.1, ThA06.1, ThA06.2,
ThA20.4, ThA21.2, ThA21.3,
ThA21.4, ThA21.5, ThA21.6,
ThA23.1, ThA23.3, ThA25.2,
ThA25.3, ThA25.5, ThA25.6,
ThB01.5, ThB04.5, ThB07.2,
ThB08.2, ThB12.1, ThB12.2,
ThB12.6, ThB18.3, ThB18.4,
ThB21.2, ThB21.3, ThB21.4,
ThB21.5, ThB21.6, ThB22.3,
ThB22.6, ThB23.4, ThB25.1,
ThB25.4, ThC10.2, ThC18.4,
ThC20.5, ThC20.6, ThC21.1,
ThC21.2, ThC21.3, ThC21.5,
ThC21.6, ThC22.3, ThC22.4,
ThC25.6, WeA06.2, WeA10.6,
WeA15.5, WeA19.6, WeA20.2,
WeA20.3, WeA20.4, WeA20.5,
WeA21.2, WeA21.3, WeA21.4,
WeB05.4, WeB05.5, WeB08.5,
WeB11.2, WeB20.1, WeB20.2,
WeB20.3, WeB20.5, WeB20.6,
WeB21.2, WeB25.6, WeC01.1,
WeC08.3, WeC20.3, WeC20.4,
WeC20.5, WeC21.1, WeC21.2,
WeC21.3, WeC23.6

Neural networks
FrA17.5, FrA22.1, FrB06.1,
FrB06.2, FrB06.3, FrB06.4,
FrB06.5, FrC07.4, ThA02.4,
ThA24.4, ThB10.1, ThB23.4,
ThB24.1, ThC01.3, WeA04.6,
WeB09.2, WeB09.3, WeB23.5,
WeC03.2, WeC03.6, WeC23.5,
WeC23.6

See also Intelligent Systems

Nonholonomic systems
FrC07.5, FrC07.6, ThA07.5,
ThB07.3, WeC07.3

Nonlinear output feedback
FrB07.5, FrB12.3, FrB14.1,
FrC12.5, ThA18.6, ThB08.4,
ThB14.1, ThB14.2, ThB14.3,
ThB14.4, ThC15.5, WeA01.2,
WeA16.4, WeB12.4, WeC07.2,
WeC19.2

Nonlinear systems identification
FrA01.1, FrA22.1, FrA22.2,
FrA22.3, FrA22.4, FrA22.5,
FrA22.6, FrB11.4, FrB16.1,
FrB22.1, FrB22.2, FrB22.3,
FrB22.4, FrB22.5, FrB22.6,
FrC06.5, FrC16.6, FrC22.4,
ThA22.5, ThA24.4, ThB14.4,
WeA18.6, WeB22.5, WeB22.6,
WeC18.2, WeC22.1

Numerical algorithms
FrA12.6, FrA22.4, FrB08.2,
FrB15.4, FrB16.4, FrB22.6,
FrC06.2, FrC06.3, FrC16.1,
FrC16.2, FrC16.3, FrC16.4,
FrC16.5, ThA16.3, ThB06.2,
ThB06.4, ThB16.1, ThB16.4,
ThC16.2, ThC16.5, ThC16.6,
WeA19.3, WeB01.5, WeB16.2,
WeB19.5, WeB22.5

See also Computational Methods

O

Observers for Linear systems
FrA11.3, FrA12.4, FrB17.2,
FrC17.2, ThA02.1, ThA02.4,
ThA02.6, ThA03.6, ThC10.4,
ThC14.4, WeA04.4, WeA11.1,
WeA11.5, WeA11.6, WeB17.3,
WeB21.6, WeC17.4

Observers for nonlinear systems
FrC11.3, FrC11.4, ThA04.2,
ThA08.1, ThA14.4, ThA18.1,
ThA18.2, ThA18.3, ThA18.4,
ThA18.5, ThA18.6, ThB02.4,
ThB04.3, ThB08.3, ThB09.2,
ThB11.5, ThB22.5, ThC04.1,
ThC11.1, WeA01.4, WeA18.1,
WeA18.2, WeA18.3, WeA18.4,
WeA18.5, WeA18.6, WeB08.4,
WeB18.1, WeB18.2, WeB18.3,
WeB19.4, WeB18.5, WeB18.6,
WeC18.1, WeC18.2, WeC18.3,
WeC18.4, WeC18.5, WeC18.6

Optimal control
FrA01.6, FrA02.1, FrA02.2,
FrA05.5, FrA08.6, FrA11.4,
FrA15.1, FrA15.2, FrA15.3,
FrA15.4, FrA15.5, FrA15.6,
FrA16.6, FrA18.3, FrB02.4,
Optimization

FrB02.5, FrB03.2, FrB14.2, FrB15.1, FrB15.2, FrB15.3, FrB15.4, FrB15.5, FrB18.5, FrB21.5, FrB24.4, FrC02.1, FrC03.2, FrC03.5, FrC05.6, FrC16.5, FrC22.2, FrC22.5, FrC23.5, FrC24.3, FrC24.4, ThA07.4, ThA08.6, ThA09.5, ThA10.1, ThA10.4, ThA15.1, ThA15.2, ThA15.3, ThA15.4, ThA15.5, ThA15.6, ThA15.6, ThA17.2, ThA23.5, ThA26.2, ThA26.3, ThB01.4, ThB03.6, ThB09.6, ThB10.4, ThB13.5, ThB15.1, ThB15.2, ThB15.3, ThB15.4, ThB15.5, ThB15.6, ThB16.5, ThB18.2, ThB20.2, ThC02.1, ThC03.6, ThC05.3, ThC05.5, ThC05.6, ThC14.6, ThC15.1, ThC15.2, ThC15.3, ThC15.4, ThC15.5, ThC15.6, ThC16.1, ThC16.2, ThC16.4, ThC16.5, ThC17.2, ThC20.6, ThC21.2, ThC24.5, WeA01.6, WeA06.4, WeA09.5, WeA10.2, WeA11.6, WeA13.3, WeA13.6, WeA14.2, WeA14.4, WeA15.1, WeA15.2, WeA15.3, WeA15.4, WeA15.5, WeA15.6, WeA20.1, WeA23.3, WeB03.2, WeB09.5, WeB10.5, WeB13.4, WeB13.6, WeB15.1, WeB15.2, WeB15.3, WeB15.4, WeB15.5, WeB15.6, WeB17.2, WeB23.1, WeB25.3, WeC01.5, WeC03.2, WeC03.6, WeC05.2, WeC07.4, WeC08.1, WeC13.2, WeC13.3, WeC13.5, WeC14.5, WeC14.6, WeC15.1, WeC15.2, WeC15.3, WeC15.4, WeC15.5, WeC15.6, WeC25.6

See also Optimization

FrA02.2, FrA02.4, FrA03.3, FrA13.2, FrA13.3, FrA14.2, FrA16.1, FrA16.3, FrA16.4, FrA16.5, FrA18.2, FrA19.6, FrA23.4, FrA25.4, FrA25.5, FrB02.1, FrB02.3, FrB03.6, FrB11.2, FrB11.5, FrB16.2, FrB16.3, FrB16.5, FrB16.6, FrB17.4, FrB17.5, FrB18.3, FrB18.6, FrB19.2, FrB19.3, FrB19.5, FrB23.2, FrB23.6, FrB25.2, FrC07.6, FrC08.4, FrC09.5, FrC21.4, FrC23.2, ThA10.5, ThA14.2, ThA15.4, ThA15.5, ThA16.1, ThA16.2, ThA16.5, ThA17.4, ThA17.6, ThA18.3, ThA22.6, ThA24.1, ThA24.3, ThB06.2, ThB06.4, ThB11.3, ThB11.6, ThB12.5, ThB13.3, ThB13.5, ThB13.6, ThB16.2, ThB16.4, ThB17.5, ThB19.5, ThB22.5, ThB24.3, ThB24.4, ThB25.6, ThC03.5, ThC06.1, ThC09.3, ThC09.4, ThC12.1, ThC13.6, ThC15.4, ThC16.1, ThC16.6, ThC18.6, ThC19.3, ThC24.6, WeA06.6, WeA10.4, WeA11.4, WeA15.5, WeA16.1, WeA16.2, WeA16.3, WeA16.4, WeA16.5, WeA16.6, WeA20.5, WeA23.3, WeB01.5, WeB04.5, WeB06.2, WeB07.3, WeB12.6, WeB13.6, WeB14.2, WeB15.4, WeB16.1, WeB16.2, WeB16.3, WeB16.5, WeB16.6, WeB19.4, WeB22.4, WeB23.3, WeC04.3, WeC05.6, WeC06.1, WeC09.5, WeC10.4, WeC11.3, WeC13.6, WeC15.2, WeC16.1, WeC16.2, WeC16.3, WeC16.4, WeC16.5, WeC16.6, WeC17.6, WeC21.4

Optimization algorithms

FrA05.4, FrA06.1, FrA06.2, FrA06.3, FrA06.4, FrA06.5, FrA06.6, FrA12.1, FrA15.1, FrA15.4, FrA16.1, FrA16.2, FrA16.3, FrA19.2, FrA20.1, FrA20.3, FrA20.4, FrA20.5, FrA20.6, FrA21.2, FrA23.4, FrB02.2, FrB03.2, FrB15.2, FrB15.5, FrB15.6, FrB16.3, FrB16.6, FrB17.4, FrB19.5, FrB23.1, FrB23.2, FrB23.4, FrB23.6, FrB24.4, FrB25.6, FrC03.6, FrC05.5, FrC09.5, FrC13.4, FrC15.5, FrC16.3, FrC19.3, FrC19.6, FrC22.5, FrC23.2, FrC23.4, ThA06.1, ThA06.2, ThA06.3, ThA06.4, ThA06.5, ThA06.6, ThA09.2, ThA13.5, ThA16.2, ThA16.3, ThA16.4, ThA16.5, ThA16.6, ThA22.3, ThB06.1, ThB06.2, ThB06.3, ThB06.4, ThB06.5, ThB06.6, ThB11.5, ThB16.1, ThB16.3, ThB16.4, ThB16.5, ThB16.6, ThB20.1, ThB24.6, ThC06.1, ThC06.2, ThC06.3, ThC06.4, ThC06.5, ThC06.6, ThC12.1, ThC16.1, ThC16.2, ThC16.3, ThC16.4, ThC21.6, ThC23.2, ThC23.4, WeA16.1, WeA24.1, WeA25.3, WeB04.5, WeB11.1, WeB13.3, WeB16.2, WeB16.3, WeB16.5, WeB24.5, WeC02.2, WeC06.5, WeC13.4, WeC16.5, WeC16.6, WeC24.3, WeC24.6

Output regulation

FrA13.3, FrA13.4, FrB01.3, FrB14.5, FrC13.3, FrC24.6, ThA06.2, ThA18.4, ThB04.2, ThB14.6, WeA14.6, WeA24.3, WeC03.3

Pattern recognition and classification

ThA04.1, ThB19.3, ThB24.4, ThC02.5, ThC02.6, ThC04.4, ThC23.2, WeB24.1, WeB24.6

Petri nets

See also Learning

FrB04.3, WeC04.1, WeC04.3, WeC04.6

Pharmaceutical processes

See also Discrete Event Systems

ThC02.4

PID control

See also Process Control

FrA08.4, FrB01.6, FrC24.1, FrC24.2, FrC24.3, FrC24.4, FrC24.5, FrC24.6, WeA20.6,
See also Control Applications

Sensor networks
FrA11.6, FrA21.2, FrB07.2, FrB17.2, FrB23.4, FrC09.1, FrC09.2, FrC09.3, FrC09.4, FrC09.5, FrC09.6, FrC11.2, ThA23.4, ThB11.2, ThB11.4, ThB18.1, ThC11.2, WeB08.2, WeB23.6, WeB25.1, WeC16.2, WeC21.5, WeC21.6

Simulation
FrA03.1, FrC07.2, FrC08.6, ThA12.1, ThB04.2, ThB10.4, ThB22.3, ThC13.2, ThC19.2, WeA10.1, WeC02.1, WeC02.4, WeA08.4, WeB10.1, WeB10.6, WeC07.2, WeC10.4, WeC10.5

Smart cities/houses
See also Control Applications

Smart grid

Smart structures
FrC06.1, ThC13.6
See also Control Applications
Stability of hybrid systems
FrA04.3, FrA04.6, FrA06.2, FrC18.1, FrC18.2, FrC18.3, FrC18.4, ThA09.4, ThA13.4, ThA17.1, ThA18.2, ThB07.1, ThC01.3, ThC21.5, WeA06.3, WeA17.3, WeB17.6, WeB20.1, WeB20.5

Stability of linear systems
FrA07.6, FrA12.2, FrA12.4, FrB05.3, FrB17.1, FrC02.2, FrC02.3, FrC02.4, FrC02.5, FrC07.2, FrC12.3, FrC17.1, FrC17.5, FrC18.2, ThA02.3, ThA02.5, ThB12.2, ThC14.1, ThC25.6, WeA02.1, WeA02.3, WeA06.1, WeA17.3, WeA24.6, WeB02.2, WeB06.5, WeB13.3, WeB16.4, WeB17.4

Stability of nonlinear systems
<table>
<thead>
<tr>
<th>System Type</th>
<th>Examples</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertain systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtering, Game theory, Markov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>processes, Mean field games,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic optimal control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subspace methods</td>
<td>ThA23.2, ThA23.6, ThB21.4, ThC19.6, WeA11.2, WeA22.2, WeA24.4, WeC22.3</td>
<td></td>
</tr>
<tr>
<td>Supervisory control</td>
<td>FrB04.1, FrB04.3, FrB04.4, FrB04.5, FrC04.1, FrC04.2, FrC04.4, FrC04.5,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ThC18.2, WeB04.1, WeB04.4, WeB04.6, WeB11.5, WeC04.1, WeC04.2, WeC04.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switched systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-varying systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncertain systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above contains a list of system types and their associated examples. The 'See also' column references other sections or categories within the document where related topics are discussed.
Maps

Front cover, back cover and local attraction section photo credits: Office de Tourisme Nice