Equivariant Systems and Observer Design

Robert Mahony

 Δ N

CENTRE

FOR

N

IEEE Conference on Decision and Control Semi-Plenary Wednesday 11 December

Pose estimation

Attitude and pose estimation

 $\hat{P} \in \mathbf{SO}(3) \text{ or } \mathbf{SE}(3)$ $V \in \mathfrak{so}(3) \text{ or } \mathfrak{se}(3)$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\hat{P} &= \hat{P}V - k\Delta\hat{P}\\ \Delta &= \mathbb{P}_{\mathfrak{se}}\left(\sum_{i=1}^{n}k_{i}(\hat{P}\overline{p}_{i} - \overline{p}_{i}^{\circ})\overline{p}_{i}^{\mathsf{T}}\hat{P}^{\mathsf{T}}\right)\end{aligned}$$

Spatial Awareness for Augmented Reality

- Global analysis framework
- Global stability results
- Algebraic and algorithmic simplicity
- Low computational and memory cost
- Practical robustness to real-world measurement errors.
 - Data association errors
 - Missing data
 - False and malicious data

5

- Global analysis framework
- Global stability results
- Algebraic and algorithmic simplicity
- Low computational and memory cost
- Practical robustness to real-world measurement errors.
 - Data association errors
 - Missing data
 - False and malicious data

6

- Global analysis framework
- Global stability results
- Algebraic and algorithmic simplicity
- Low computational and memory cost
- Practical robustness to real-world measurement errors.
 - Data association errors
 - Missing data
 - False and malicious data

- Global analysis framework
- Global stability results
- Algebraic and algorithmic simplicity
- Low computational and memory cost
- Practical robustness to real-world measurement errors.
 - Data association errors
 - Missing data
 - False and malicious data

8

- Global analysis framework
- Global stability results
- Algebraic and algorithmic simplicity
- Low computational and memory cost
- Practical robustness to real-world measurement errors.
 - Data association errors
 - Missing data
 - False and malicious data

A review of nonlinear observer design

Equivariant Systems and Observer Design

Equivariant Systems and Observer Design

System function is linear in input

$$f(\xi, a_1v_1 + a_2v_2) = a_1f(\xi, v_1) + a_2f(\xi, v_2)$$

 $v \in \mathbb{V}$

Equivariant Systems and Observer Design

Equivariant Systems and Observer Design

Classical Observer Architecture

$$\begin{array}{c}
\dot{\xi} = f(\xi, v) \\
y = h(\xi) \\
v \qquad y \\
\dot{\xi} = f(\hat{\xi}, v) - \Delta_t (h(\hat{\xi}) - y) \\
\end{array}$$

Equivariant Systems and Observer Design

Classical Observer Architecture

$$\begin{split} \dot{\xi} &= f(\xi, v) \\ y &= h(\xi) \\ v & y \\ \dot{\hat{\xi}} &= f(\hat{\xi}, v) - \Delta_t (h(\hat{\xi}) - y) \\ \dot{\hat{\xi}} &= f(\hat{\xi}, v) \\ \end{split}$$
Internal model $\dot{\hat{\xi}} &= f(\hat{\xi}, v)$

Equivariant Systems and Observer Design

Classical Observer Architecture

Equivariant Systems and Observer Design

Observer analysis framework

A good observer design is characterised by $e(t) \rightarrow 0$

Stability LES – Local	Asymptotic Stability	GES - Global Exponential Stability Unifo		GAS - Global Asymptotic Stability
Exponential Stability	Practical Stability			orm Stability

Equivariant Systems and Observer Design

19

- How do you compute the innovation $h(\hat{\xi}) y$?
- Why is the state space of the observer $\hat{\xi} \in \mathcal{M}$?

Equivariant observer architecture

20

Observer state

- A new observer state space
- An output map from the new state to the desired estimate
- A well defined global error signal
- Observer dynamics (internal model and correction term)

An introduction to symmetry

Equivariant Systems and Observer Design 11-

An apple is a manifold

Parametrizing state by symmetry

Group parametrization

Observer state $\hat{X} \in \mathbf{G}$

G Lie group

Observer state space and output

Equivariant Systems and Observer Design 11-Dec

Observer state space and output

Lifted System and Internal Model

Equivariant Systems and Observer Design 11-D

Lie algebra = tangent space at identity

Equivariant Systems and Observer Design

Equivariant Systems and Observer Design

Lift: Action projection

Equivariant Systems and Observer Design

Lift: Finding a right inverse

Equivariant Systems and Observer Design

Theorem

Internal model

Equivariant Systems and Observer Design

Output Symmetry

36

Output Symmetry and Innovations

Start with state symmetry

Equivariant Systems and Observer Design

Output map

Output Symmetry

Equivariant output

Equivariant Systems and Observer Design 11-De

Equivariant Systems and Observer Design

Equivariant observer: innovation

Equivariant Systems and Observer Design 11-

Equivariant observer: innovation

Equivariant Systems and Observer Design

Error kinematics

$$\frac{\mathrm{d}}{\mathrm{d}t}e \coloneqq \mathrm{d}\phi_e \operatorname{Ad}_{\hat{X}}\left(\Lambda(\phi_{\hat{X}}(\xi^\circ), v) - \Lambda(\xi, v)\right) - \mathrm{d}\phi_e \Delta_t(\epsilon)$$

Observer design remains a challenging problem due to non-autonomous error dynamics

Equivariant Systems and Observer Design

45

Input Symmetry and Equivariance

kinematics

Equivariant Systems and Observer Design

State Symmetry

Equivariant Systems and Observer Design

Input symmetry and equivariance

Equivariant Systems and Observer Design

Input symmetry and equivariance

Equivariant Systems and Observer Design

System function defines a family of smooth vector fields

The input action is uniquely defined by the state action

$$f_{\psi_X(v)} \coloneqq \mathrm{d}\phi_X \circ f_v \circ \phi_{X^{-1}} \in \mathfrak{X}(\mathcal{M})$$

 $\begin{aligned} f(\phi_X(\xi), \psi_X(v)) &= f_{\psi_X(v)}(\phi_X(\xi)) = \mathrm{d}\phi_X f(\phi_{X^{-1}}(\phi_X(\xi)), v) \\ &= \mathrm{d}\phi_X f(\xi, v) \end{aligned}$

The input space \mathbb{V} can always be extended to make the system f equivariant.

Definition: A lift $\Lambda : \mathcal{M} \times \mathbb{V} \to \mathfrak{g}$ is equivariant if

$$\operatorname{Ad}_{X^{-1}} \Lambda(\xi, v) = \Lambda(\phi_X(\xi), \psi_X(v))$$

Theorem: If a kinematic system is equivariant and the symmetry group **G** is reductive then an equivariant lift Λ exists.

Equivariant Systems and Observer Design

Invariant Systems

Equivariant Systems and Observer Design

Invariant systems

Definition: An equivariant lift $\Lambda : \mathcal{M} \times \mathbb{V} \to \mathfrak{g}$ is **Type I:** if

$$\Lambda(\xi,v) = \Lambda(v)$$

Type II: if

$$\operatorname{Ad}_{X^{-1}} \Lambda(\xi, v) = \Lambda(\phi_X(\xi), v)$$

Type I system kinematics

$$\dot{X} = X\Lambda(v)$$

Body-fixed velocity measurements

Type II system kinematics

$$\dot{X} = \Lambda(\xi^{\circ}, v)X$$

Reference-fixed velocity measurements

Equivariant Systems and Observer Design

$$\frac{\mathrm{d}}{\mathrm{d}t}e \coloneqq \mathrm{d}\phi_e\left(\Lambda(\xi^\circ,\psi_{\hat{X}^{-1}}(v)) - \Lambda(e,\psi_{\hat{X}^{-1}}(v))\right) - \mathrm{d}\phi_e\Delta_t(\epsilon)$$

Type I system error kinematics

$$\frac{\mathrm{d}}{\mathrm{d}t}e = -k\mathrm{d}\phi_e\Delta_t(\epsilon)$$

Autonomous error kinematics.

Type II system kinematics

$$\frac{\mathrm{d}}{\mathrm{d}t}e \coloneqq \mathrm{d}\phi_e\left(\Lambda(\xi^\circ, v) - \Lambda(e, v)\right) - \mathrm{d}\phi_e\Delta_t(\epsilon)$$

Independent error kinematics.

Equivariant Observer Design

$$\frac{\mathrm{d}}{\mathrm{d}t}e \coloneqq \mathrm{d}\phi_e\left(\Lambda(\xi^\circ,\psi_{\hat{X}^{-1}}(v)) - \Lambda(e,\psi_{\hat{X}^{-1}}(v))\right) - \mathrm{d}\phi_e\Delta_t(\epsilon)$$

Design approaches:

- Constructive nonlinear design for a Lyapunov function $\mathcal{L}(e)$.
- Linearise error kinematics around $e = \xi^{\circ}$ and use linear design.
- Minimum energy cost functional and approximation.

Spatial Awareness for Augmented Reality

Equivariant Systems and Observer Design

11-Dec-19 57

Australian National University

Kinematics

Conclusions

$$\dot{\xi} = f(\xi, v)$$

 $y = h(\xi)$

Equivariant Systems and Observer Design 11-Dec-19

59

Equivariant Systems and Observer Design

Equivariant Systems and Observer Design