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Feedback 

• Feedback is ubiquitous and is a most basic concept of automatic control.

• Feedback control has been a central theme in control systems, and

tremendous progress has been made in both theory and applications.

• One celebrated example is the Bode’s integral formula[1] on sensitivity

functions, which reveals a fundamental limitation of feedback, and has

had a lasting impact on the field[2].

[1] H.W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, New York, 1945.

[2] J. Chen, S. Fang and H. Ishii, Fundamental limitations and intrinsic limits of feedback: An overview in an

information age, Annual Reviews in Control, https://doi.org/10.1016/j/arcontrol.2019.03.011



Uncertainty

• Uncertainty is ubiquitous too, either internal or external.

• Uncertainty necessitates the use of feedback and can be dealt with by

feedback effectively .

• Usually described by a set mathematically, either parametric or functional.



Feedback and Uncertainty

• The feedback control of uncertain dynamical systems is by definition the

control of all possible systems relating to this uncertainty set, by using

available system information.

• Modeling, identification and feedforward are also instrumental, but we will

focus on feedback and uncertainty in this lecture.



1. Self-Tuning Regulator(STR)
(linear systems with nonlinear feedback)

2. Classical PID Control
(nonlinear systems with linear feedback)

3. Capability of Feedback
(nonlinear systems with nonlinear feedback)

This lecture will talk about



1. Why talk about STR?

• Basic and natural
linear systems in discrete-time with random noise;

least-squares estimation + minimum variance control.

• Historical role
• A long-standing open problem in theory

The closed-loop system equation is a complicated nonlinear and nonstationary 

stochastic process.  

• Useful implications
For more complicated problems where online learning is combined with feedback 



• Historical role of STR

As pointed out by Lennart Ljung in his preamble[1] to the reprint of the seminal

paper “On self-tuning regulators” by Åstr  om and Wittenmark(1973) :

“The paper by Åstr  𝑜m and Wittenmark had an immediate impact.

Literally thousands of papers on self-tuning regulation, both theoretical

and applied, appeared in the next decade. On the theoretical front, the

paper left open the question of convergence and stability and this inspired

much subsequent research.”

[1] Tamer Bașar(Ed), Control Theory: Twenty-Five Seminal Papers(1932-1981), pp.423-424, IEEE Press, 2001



“The lasting influence of the paper is perhaps best judged by the fact

that today there are many thousands of control loops in practical use that

have been designed using the self-tuning concept.”

“The self-tuning regulator revitalized the field of adaptive control that

had lost, in the early 1970s, some of its earlier lustre.”

[1] Tamer Bașar(Ed), Control Theory: Twenty-Five Seminal Papers(1932-1981), pp.423-424, IEEE Press, 2001



• A long-standing open problem:

Stability, convergence and optimality

• Extensive related investigations, e.g.,

R.E. Kalman(1958)

K.J. Åstr  om and B. Wittenmark(1973)

L. Ljung(1976, 1977)

J.B. Moore(1978)

V. Solo(1979)

G.C. Goodwin, P.J. Ramadge, and P.E. Caines(1980,1981)

T.L. Lai and C.Z. Wei (1982, 1986)

A. Becker, P.R. Kumar and C.Z. Wei(1985)

H.F. Chen and L. Guo(1986,1987)

P.R. Kumar(1990)

L. Guo and H.F. Chen(1991)

L. Guo(1995)

…………



2. Why talk about PID?

• Linear combination of the “present-past-future”  output errors.

Model-free, data-driven, simple and easy-to-use.

• Can eliminate steady state offsets via the integral action, and can
anticipate the tendency through the derivative action.

• The Newton's second law corresponds to a second order differential
equation, which is just suitable for PID control.



• Despite the remarkable progresses in modern control theory, the

classical PID controller is still the most widely used one in engineering

systems, and “we still have nothing that compares with PID” [1].

• For example, more than 95% control loops are of PID type in process

control. The PID controller can be said as the “bread and butter” of

control engineering [2].

• There are various PID software packages, commercial PID hardware

modules, and patented PID tuning rules.

[1] T. Samad, “A survey on industry impact and challenges thereof,” IEEE Control Systems Magazine, vol. 37, no. 1, 2017.

[2] K.J. Åstr  om and T. H  agglund, PID Controllers: Theory, Design and Tuning. Instrument Society of America, 1995.

The impact of PID 



A long history with continued investigation

Some recent investigations

K.J. Åstr  om and T. H  agglund ( 1995, 2006)
J. Ackermann and D. Kaesbauer(2001)
Z.P. Jiang and I. Mareels(2001)
W.-D. Chang, R.-C. Hwang and J.-G. Hsieh(2002)
H.K. Khalil (2002)
M.T. S  oylemez, N. Munro and H.Baki (2003)
F. Blanchini, A. Lepschy, S. Miani (2004)
S. Hara, T. Iwasaki and D. Shiokata (2006)
N.J. Killingsworth and M. Krstic (2006)
L. Qu, W. Zhang and D. Gu(2006)
G.J. Silva, A. Datta and S.P. Bhattacharyya (2007)
L.H. Keel and S.P. Bhattacharyya(2008)
F. Padula and A. Visioli(2012)
M. Fliess and C. Join (2013)
J.G. Romero, A. Donaire, R. Ortega and B. Boria (2018)
C. Zhao and L. Guo(2017, 2019)
D. Ma and J. Chen( 2018)
J.K. Zhang and L. Guo(2019)
.............

Some early development

J.Watt(1788)

G.B. Airy(1840)

J.C.Maxwell(1868)

J.Vyshnegradskii(1876)

E.J.Routh(1877)

A.Hurwitz(1895)

E.Sperry(1911)

N.Minorsky(1922)

A. Canllendar et al (1936)

J.G.Ziegler and N.B.Nichols(1942)

…………



• Most of the theoretical studies on PID focus on linear systems. To justify

the remarkable practical effectiveness of the PID controllers, we need to

face nonlinear uncertain dynamical systems, and to understand the

rationale and capability of the PID controller.

• On the other hand, a large number of the practical PID loops are

believed to be poorly tuned[1], and better understanding of the PID

control may improve its widespread practice and so contribute to better

product quality[2].

[1] A. O’Dwyer, “PI and PID controller tuning rules: an overview and personal perspective,” Proc. of the IET Irish Signals and 

Systems Conference, pp. 161–166, 2006.

[2] K.J. Åstr  om and T. H  agglund, PID Controllers: Theory, Design and Tuning,  Instrument Society of America, 1995.

Further investigation is required 



3. Why talk about feedback capability?

• Both STR and PID are special forms of feedback laws.

• By feedback capability we mean the maximum capability and fundamental

limitations of the feedback mechanism, defined as the class of all possible

feedback laws.

• Our emphasize will be placed on the relationship between feedback and

uncertainty, to understand how much uncertainty can be dealt with by the

feedback mechanism.

• We are interested to know not only what the feedback mechanism can do, but

also what the feedback mechanism cannot do, in the presence of large

structural uncertainties.





The most relevant research areas on feedback and uncertainty are 

adaptive control and robust control, among others.  

However,  only a few results address the maximum capability and 

fundamental limitations of the feedback mechanism, see, e.g., [1] and 

[2] for some uncertain linear systems.

[1]  P.E. Caines and H.F. Chen, “On the adaptive control of stochastic systems with random parameters: A counter-example”, 

Ric. Autom., XIII, 190-196, 1982. 

[2] P. P. Khargonekar, T. T. Georgiou, and A. M. Pascoal, “On the robust stabilizability of linear time invariant plants with 

unstructured uncertainty”, IEEE-TAC, 32(3), 201-207, 1987



1. Self-Tuning Regulators















Some Basic Problems

• Is the closed-loop system globally stable?

• Is the tracking error asymptotically optimal?

• Does the STR enjoy the best possible rate of convergence? 



Why the analysis is complicated?

• No statistical properties of the closed-loop system signals are available 

a priori, since they are characterized by a set of complicated nonlinear 

stochastic dynamical equations, which are nonstationary and strongly 

correlated.

• A key step is to establish the global stability, that depends on the LS. 

However, the verification of even the weakest possible convergence 

condition for LS ( Lai-Wei, 1982) is still quite hard, without certain 

stability properties.  



Why the analysis is complicated?

• One needs to get out of circular arguments.

good 
output

good
input

good 
estimate





L. Guo and H.F. Chen, “The Åstr  𝑜m-Wittenmark self-tuning regulator revisited and ELS-based  adaptive trackers”,

IEEE-TAC, 36(7), 802-812, 1991. 



[1] L. Guo, “Convergence and logarithm laws of self-tuning regulators”, Automatica, Vol.31, No.3,  pp.435-450, 1995.

[2] T.L. Lai, “Asymptotically efficient adaptive control in stochastic regression models”,  Adv. in  Applied Math., 7, 23-45, 1986. 



Remarks

In the analysis of STR

• The convergence of the averaged regret of adaptive prediction is more relevant 

than the convergence of the LS itself.  A detailed analysis of LS can provide a 

“sharp bound” for a certain accumulated weighted regret regardless of the input 

signal, which turns out to critical for further analysis of the nonlinear closed-loop 

stochastic systems under STR.

• The martingale theory has played a fundamental role in dealing with non-

stationary and correlated signals or data. This may continue to be so when we deal 

with more complicated data or signals that are generated from complex stochastic 

feedback systems, where independency and stationarity are not hold.   



Some Related Problems and Results 

• More on minimum phase linear stochastic systems 

MIMO with colored noises [1], and SISO with multiple delay and model 

reference[2]. 

• Non-minimum phase linear stochastic systems

The controllability of the estimated model is a key issue, which can be 

guaranteed (see [3]) by a random regularization approach combined with the 

self-convergence property established in [3] for the weighted LS proposed in 

[4]. An  asymptotically optimal adaptive LQG control is given in [5].

[1] L.Guo and H.F.Chen, “The Åstr  𝑜m-Wittenmark self-tuning regulator revisited and ELS-based  adaptive trackers”,  IEEE-TAC, 36(7), 1991.

[2] W. Ren and P.R. Kumar, “Stochastic adaptive prediction  and model reference control”, IEEE-TAC, 39, 2047-2060, 1994.

[3] L. Guo, “Self-convergence of weighted Least-squares with applications to stochastic adaptive control”, IEEE-TAC, 41(1), 79-89, 1996.

[4] B. Bercu, “Weighted estimation and tracking for ARMAX models”, SICON, 33, 89-106, 1995.

[5] T. E. Duncan, L.Guo, B.Pasik-Duncan, “Adaptive continuous-time linear quadratic Gaussian control”, IEEE-TAC, 44(9), 1652-1662, 1999.



Some Related Problems and Results 

• Jump Markov parameter linear stochastic systems

A necessary and sufficient condition is given in [1] for adaptive 

stabilization in discrete-time, which is different from that for the non-

adaptive case[2], and reveals an attenuation of feedback capability in 

the presence of jump parameter uncertainty.  

There are also many investigations in continuous-time, see, e.g., [3] 

together with the references therein, and a complete characterization is 

yet to be found.   

[1] X. Feng and L. Guo, “Necessary and sufficient conditions for adaptive stabilizability of jump linear systems”,  Communications 

in  Information and Systems , 1(2), 205-224,  2001.

[2] Y. Ji and H.J. Chizeck, “Jump linear quadratic Gaussian control: steady-state solution and testable conditions”, Control  Theory 

and Advanced Technology, 6(3), 289-319,1990. 

[3] P.E. Caines and J.F. Zhang, “On the adaptive control of jump parameter systems via nonlinear filtering”,  SIAM J. Control and    

Optimization , 33(6), 1995.



2. PID Control











[1] C.Zhao and L.Guo, “PID controller design for second order nonlinear uncertain systems”, Sci. China Inf. Sci., 60(2):  022201, 2017.

[2] J.K.Zhang and L. Guo, “Theory and Design of PID Controller for Nonlinear Uncertain Systems”, IEEE Contr. Syst. Lett., 3(3), 643 - 648, 2019.

Remark. The above theorem was proven in [1]. Extensions to high-dimensional 

uncertain nonlinear systems can be found in [2].









C.Zhao and L.Guo, “PID controller design for second order nonlinear uncertain systems”, Sci. China Inf. Sci., 60(2): 022201, 2017







Remark.  The proof follows the Markus-Yamabe theorem, which had been a conjecture in 

ODE and proven to be true for nonlinear systems in the plane.



[1] S. Zhong, Y. Huang and L. Guo, “A parameter formula connecting PID and ADRC”, Sci. China Inf. Sci., doi: 10.1007/s11432-019-2712-7, 2019.



[1] J. Q. Han, “Auto-disturbance rejection control and its applications”, Control and Decision, 13(1), 1998 (in Chinese).

[2] J. Q. Han,  “From PID to active disturbance rejection control”, IEEE Trans. on Industrial Electronics, 56, 900–906, 2009.

[3] Z. Gao, “Scaling and bandwidth-parameterization based controller tuning”, Proc. Amer. Control Conf. , 6, 2006.

[4] Y. Huang, W. Xue, “Active disturbance rejection control: methodology and theoretical analysis”, ISA trans., 53(4), 963-976, 2014.

Remark.  The above formula stems from the inherent connection between the PID and the ADRC 

(Active disturbance rejection control) proposed by J.Q. Han in [1](see also [2]), where a key 

ingredient is an extended state observer (ESO)  used for estimating the uncertain dynamics. The 

ESO may be designed as a linear one[3], and the reduced order linear ESO[4] will give the above 

estimator for the unknown  f.



An illustration

where 𝑎 ≤ 1, 𝑏 ≤ 1, unknown, 𝑥1 0 = 3, 𝑥2 0 = 2.  Let 𝑦∗ = 1.
Set 𝑘𝑎𝑝 = 1, 𝑘𝑎𝑑 = 2,𝜔𝑜 = 7.

1 2

2 1 2sin

x x

x a x bx u




  



C. Zhao and L. Guo, “Extended PID control of nonlinear uncertain systems,” arXiv: 1901.00973, 2019





3. Feedback Capability 



A Theoretical Framework 



System Information

Uncertain System



Feedback Mechanism









C. Y. Li and L. Guo,  “A dynamical inequality for the output of uncertain nonlinear systems”, 

Sci. China Inf. Sci.,  56: 012201(9), doi: 10.1007/s11432-012-4622-7, 2013.
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3 

L.L. Xie and L. Guo, “How much uncertainty can be dealt with by feedback?”, IEEE-TAC, 45(12), 2203-2217, 2000.



C.D. Huang and L. Guo, “On feedback capability of a class of semiparametric uncertain systems”,  Automatica, 48(5): 873-878, 2012.



[1] C. Li and L. Guo, ”On feedback capability in nonlinearly parameterized uncertain dynamical systems”, IEEE-TAC, 56(12), 2946-2951, 2011. 

[2] Z. Liu and C. Li,  “Is it possible to stabilize discrete-time parameterized uncertain systems growing exponentially fast?” ,SICON, 57(3), 1965–1984, 2019.

[3] B. Li and  G. Shi, “Maximum Capability of Feedback Control for Network Systems”, Proc. 37th Chinese Control Conference,  6547-6554, 2018

[4] V.F. Sokolov, “Adaptive stabilization of parameter-affine minimum-phase plants under Lipschitz uncertainty”, Automatica, 73, 64-70, 2016.

[5] F. Xue and L. Guo, “On limitations of the sampled-data feedback for nonparametric dynamical systems”, J. Systems Science and Complexity, 15(3), 225-250, 2002.

[6] J.L.Ren, Z.B.Cheng and L.Guo, “Further results on limitations of sampled-data feedback”, J. Systems Science and Complexity, 7:817-835, 2014.





Concluding Remarks

• This lecture has presented some basic results on feedback and uncertainty

for three basic problems, i.e., STR, PID and feedback capability. There are

many more problems remain to be solved or investigated.

• The rapid development of information technology makes it possible to

investigate more and more complex control systems, and at the same time

brings a series of interesting new problems, whose investigation may still

depend on our understanding of the basic concepts and problems in the field.



Concluding Remarks(cont’d)

• Mathematical models paly a basic role in control theory even if they may have 

large uncertainties. However, if the models are not regarded as approximations of 

the real-world systems and, instead, just taken as an intermediate step in  

controller design, then great efforts are still needed towards a comprehensive 

understanding of the boundaries of practical applicability of the controller.

• Furthermore, besides uncertainties, many systems to be controlled or regulated in 

social, economic, biological and the future “intelligent” engineering systems, 

may have their own objectives to pursue. Such complex uncertain systems, may 

not belong to the traditional framework of control or game theory, and call for 

more research attention[1]. 

[1] R.R. Zhang and L. Guo, “Controllability of Nash Equilibrium in Game-Based Control Systems”, IEEE-TAC, 64(10): 4180-4187, 2019
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