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 Feedback is ubiquitous and Is a most basic concept of automatic control.

« Feedback control has been a central theme in control systems, and
tremendous progress has been made in both theory and applications.

* One celebrated example is the Bode’s integral formula[1] on sensitivity
functions, which reveals a fundamental limitation of feedback, and has
had a lasting impact on the field[2].

[1] H.W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, New York, 1945,

[2] J. Chen, S. Fang and H. Ishii, Fundamental limitations and intrinsic limits of feedback: An overview in an
information age, Annual Reviews in Control, https://doi.org/10.1016/j/arcontrol.2019.03.011



Uncertainty

Uncertainty is ubiquitous too, either internal or external.
Uncertainty necessitates the use of feedback and can be dealt with by
feedback effectively .

Usually described by a set mathematically, either parametric or functional.
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Feedback and Uncertainty

« The feedback control of uncertain dynamical systems is by definition the

control of all possible systems relating to this uncertainty set, by using
available system information.

F

« Modeling, identification and feedforward are also instrumental, but we will
focus on feedback and uncertainty in this lecture.



This lecture will talk about

1. Self-Tuning Regulator(STR)

(linear systems with nonlinear feedback)

2. Classical PID Control

(nonlinear systems with linear feedback)

3. Capability of Feedback

(nonlinear systems with nonlinear feedback)



1. Why talk about STR?
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Basic and natural

linear systems in discrete-time with random noise;
least-squares estimation + minimum variance control.
Historical role
A long-standing open problem in theory
The closed-loop system equation is a complicated nonlinear and nonstationary
stochastic process.
Useful implications

For more complicated problems where online learning is combined with feedback



 Historical role of STR

As pointed out by Lennart Ljung in his preamble[1] to the reprint of the seminal
paper “On self-tuning regulators” by Astrom and Wittenmark(1973) :

“The paper by Astrém and Wittenmark had an immediate impact.
Literally thousands of papers on self-tuning regulation, both theoretical
and applied, appeared in the next decade. On the theoretical front, the
paper left open the question of convergence and stability and this inspired
much subsequent research.”

[1] Tamer Basar(Ed), Control Theory: Twenty-Five Seminal Papers(1932-1981), pp.423-424, IEEE Press, 2001



“The lasting influence of the paper is perhaps best judged by the fact
that today there are many thousands of control loops in practical use that
have been designed using the self-tuning concept.”

“The self-tuning regulator revitalized the field of adaptive control that

had lost, in the early 1970s, some of its earlier lustre.”

[1] Tamer Basar(Ed), Control Theory: Twenty-Five Seminal Papers(1932-1981), pp.423-424, IEEE Press, 2001



* A long-standing open problem:
Stability, convergence and optimality

» Extensive related investigations, e.g.,

R.E. Kalman(1958)
K.J. Astrom and B. Wittenmark(1973)

L. Ljung(1976, 1977)

J.B. Moore(1978)

V. Solo(1979)

G.C. Goodwin, P.J. Ramadge, and P.E. Caines(1980,1981)
T.L. Laiand C.Z. Wei (1982, 1986)

A. Becker, P.R. Kumar and C.Z. Wei(1985)

H.F. Chen and L. Guo(1986,1987)

P.R. Kumar(1990)

L. Guo and H.F. Chen(1991)

L. Guo(1995)



2. Why talk about PID?
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Linear combination of the “present-past-future” output errors.

Model-free, data-driven, simple and easy-to-use.

Can eliminate steady state offsets via the integral action, and can
anticipate the tendency through the derivative action.

The Newton's second law corresponds to a second order differential
equation, which Is just suitable for PID control.




The impact of PID

* Despite the remarkable progresses in modern control theory, the
classical PID controller is still the most widely used one in engineering
systems, and “we still have nothing that compares with PID” [1].

* For example, more than 95% control loops are of PID type in process
control. The PID controller can be said as the “bread and butter” of
control engineering [2].

* There are various PID software packages, commercial PID hardware
modules, and patented PID tuning rules.

[1] T. Samad, “A survey on industry impact and challenges thereof,” IEEE Control Systems Magazine, vol. 37, no. 1, 2017.
[2] K.J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. Instrument Society of America, 1995.



A long history with continued Investigation

Some early development

J.Watt(1788)

G.B. Airy(1840)
J.C.Maxwell(1868)
JVyshnegradskii(1876)
E.J.Routh(1877)

A.Hurwitz(1895)

E.Sperry(1911)
N.Minorsky(1922)

A. Canllendar et al (1936)
J.G.Ziegler and N.B.Nichols(1942)

Some recent investigations

K.J. Astrom and T. Higglund ( 1995, 2006)

J. Ackermann and D. Kaesbauer(2001)

Z.P. Jiang and |. Mareels(2001)

W.-D. Chang, R.-C. Hwang and J.-G. Hsieh(2002)
H.K. Khalil (2002)

M.T. Soylemez, N. Munro and H.Baki (2003)

F. Blanchini, A. Lepschy, S. Miani (2004)

S. Hara, T. Iwasaki and D. Shiokata (2006)

N.J. Killingsworth and M. Krstic (2006)

L. Qu, W. Zhang and D. Gu(2006)

G.J. Silva, A. Datta and S.P. Bhattacharyya (2007)
L.H. Keel and S.P. Bhattacharyya(2008)

F. Padula and A. Visioli(2012)

M. Fliess and C. Join (2013)

J.G. Romero, A. Donaire, R. Ortega and B. Boria (2018)
C. Zhao and L. Guo(2017, 2019)

D. Ma and J. Chen( 2018)

J.K. Zhang and L. Guo(2019)



Further investigation Is required

* Most of the theoretical studies on PID focus on linear systems. To justify
the remarkable practical effectiveness of the PID controllers, we need to
face nonlinear uncertain dynamical systems, and to understand the
rationale and capability of the PID controller.

* On the other hand, a large number of the practical PID loops are
believed to be poorly tuned[1], and better understanding of the PID
control may improve its widespread practice and so contribute to better
product quality[2].

[1] A. O’Dwyer, “Pl and PID controller tuning rules: an overview and personal perspective,” Proc. of the IET Irish Signals and
Systems Conference, pp. 161-166, 2006.
[2] K.J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning, Instrument Society of America, 1995.



3. Why talk about feedback capability?

« Both STR and PID are special forms of feedback laws.

* By feedback capability we mean the maximum capability and fundamental
limitations of the feedback mechanism, defined as the class of all possible
feedback laws.

°* Our emphasize will be placed on the relationship between feedback and
uncertainty, to understand how much uncertainty can be dealt with by the
feedback mechanism.

* We are interested to know not only what the feedback mechanism can do, but
also what the feedback mechanism cannot do, in the presence of large
structural uncertainties.



Capability and Limitations'

Not merely intellectual curiosity.

e Maximum Capability of Feedback: Can encourage us in
improving the controller design to reach or approach
the maximum capability, and may help us in alleviating
the workload of modeling and identification.

e Fundamental Limitations of Feedback: Can prevent us
from wasting time and energy on searching for a
feedback controller that does not exist, and alert us of
the danger of being unable to control uncertain systems

when the size of the uncertainty reaches the limit
established.



The most relevant research areas on feedback and uncertainty are
adaptive control and robust control, among others.
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However, only a few results address the maximum capability and
fundamental limitations of the feedback mechanism, see, e.g., [1] and
[2] for some uncertain linear systems.

[1] P.E. Caines and H.F. Chen, “On the adaptive control of stochastic systems with random parameters: A counter-example”,
Ric. Autom., XIII, 190-196, 1982.

[2] P. P. Khargonekar, T. T. Georgiou, and A. M. Pascoal, “On the robust stabilizability of linear time invariant plants with
unstructured uncertainty”, IEEE-TAC, 32(3), 201-207, 1987



1. Self-Tuning Regulators



Linear Stochastic Systems

For simplicity, consider the SISO case with additive noise,

Yk+1t aiyk + -+ apYk—pt1 = bruyg + -+ + bgug_gy1 + Wiy1, k >0,

where uy, y, and wy are the system input, output and random noises,
respectively. The coefficients a; and b; are assumed to be unknown.

Linear regression form

Yk+1 = 97_()01( + Wk+1, k > 07

where the regression vector and parameter vector are defined by

-
Pk = [yka' vy Yk—p+1, Uky - - - uk—q—!—l] )
0 = [—81,...,—ap,bl,...,bq]T.



Basic Assumptions

Al. The noise {wy, Fi} is a martingale difference sequence, and there
exists a constant S > 2 such that

sup E[|wi11]%|Fi] < o0,  a.s.
k>0

A2. The system is minimum phase.

A3. The reference sequence {y; } is bounded and independent of {wy}.



Optimal Non-adaptive Control

Consider the optimal tracking problem

Jk = min E(yk41 — Yis1)®s k> 1.

ug € Fy

At any time k, the best prediction to yix 1 is E[yxi1|Fk] = /[ 6.
When @ is known, the optimal control can be solved by setting

Elvk+1|Fk] = Yieia

to get an explicit expression

1
U = b—l(alﬂ: + -+ apYk—pt1 — boug_—1 — - — bgUun_qg41 + Yii1)-
with the following optimal cost:

I = E[wZ, 1| Fk], Vk > 1.



Least Squares (LS)

0 = arg min Z(yf i @}_19)2, vk > 1,

which can be solved explicitly

k -1/ &k
Ok = (Z%‘—lsof_l) (Z‘Pj—lyj)a
Jj=1

j=1

and calculated recursively by
Ok11 = Ok + akPrpi(Vir1 — pirbi),

Pii1 = P — akPrpkpi P, ak = (1 + @i Pepr) L,

where the initial estimate 8y € RP™9, and the initial positive definite matrix
Py € R(PT)*(P+9) can be chosen arbitrarily.



Self-Tuning Regulator (STR)

Using the online LS, one can construct an adaptive predictor y,.1 based on
the " certainty equivalence principle”, i.e.,

Yk+1 = PiOk.
Now, let ¥k+1 = ¥4, 1, the STR can be expressed as follows:

1

U = b (a1kyk + - + ApkYk—p+1 — boklUg—1 — -+ — bgrln—g+1 + y;+1),
1k

where aj., by, are the components of the LS estimate 6.

To avoid possible zero divisor problem, bix can be modified slightly and

replaced by
" b1y, if b1k = \/ﬁ
k—1

where sign(-) is the sign function, and ry is defined by

k
re=-¢e+ > |leill®>, k=1.
i=0



The Closed-Loop System

Yk+1 + atyk + -+ apyYk—py1 = brug + - -+ bgug g1 + wgi1, k > 0.

01 = Ok + akPrpi(vis1 — L Ok),
Pii1 = Pk — akPrpkpi P, ak = (L+ ¢/ Prpr) .

-
Ok = [—aik,---, —apk, bik, - - -, bgk]
Uy = 7 (a1kyk + -+ -+ apkYk—p+1 — boktk—1 — -+ — bgkln—q+1 + Yii1)-
1k
> Plant >
L LS .
< STR :




Some Basic Problems

* |s the closed-loop system globally stable?
* |s the tracking error asymptotically optimal?

* Does the STR enjoy the best possible rate of convergence?



Why the analysis i1s complicated?

« No statistical properties of the closed-loop system signals are available
a priori, since they are characterized by a set of complicated nonlinear
stochastic dynamical equations, which are nonstationary and strongly
correlated.

« AKkey step Is to establish the global stability, that depends on the LS.
However, the verification of even the weakest possible convergence
condition for LS ( Lai-Wel, 1982) is still quite hard, without certain
stability properties.



Why the analysis Is complicated?

* One needs to get out of circular arguments.

Example(p =1,q = 1):

Yir1 = ayt + bur + wiqq
1 %
up = — -+ (ay — yie,)
by
1
tgl 5 tgl t—1
a X Uy Yy
t _ i:()y?’ 20 1 Yi ?/:Uy?thl gf)od
t—1 t—1 o t—1 estimate
by X ouyp, X u; X Uy




Regret of Tracking

Note that the performance of adaptive tracking depends essentially on the
quality of the adaptive predictor. The difference between the best prediction

and the adaptive prediction (or tracking signal) may be referred to as the
‘regret” denoted by

Ri = (Elyky1]|Fi] — ?ﬁc+1)2;
which is usually not zero due to the existence of the unpredictable noises.

However, one may evaluate the averaged regret defined by

1 n
EI;R;(.

It can be shown that stability and optimality will follow once the above
averaged regret tends to zero as n increases to infinity.



Theorem 1.1

Under Assumptions A1-A3, the averaged regret tends to zero.
In other words, the closed-loop control system of STR is
globally stable, i.e.,for any initial condition,

1 n
l. - 2 2 { . i I
im sup — E (vi + up) < oo, as.,

n—oo k—1

and asymptotically optimal, i.e.,

1 n
lim sup — Z(yk —vi)? =min, as..

n
n—roo —1

L. Guo and H.F. Chen, “The Astrém-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers”,
IEEE-TAC, 36(7), 802-812, 1991.



Theorem 1.2

Under some additional assumptions, the closed-loop control system will have
the following logarithm law for the accumulated regret of tracking:

I .
Z(E[}’k+1|-7:k] — Yip1)? =dim(0)os,  as.,
k=1

lim
n—oo log n

where dim(#) is the dimension of the unknown parameter vector, o2, is the
conditional variance of the noises(assumed to be constant for simplicity).

Remark: The details of this theorem is given in [1], and a discussion why
O(log n) is the minimal order of magnitude that one may at most expect to
achieve for the accumulated regret is found in [2].

[1] L. Guo, “Convergence and logarithm laws of self-tuning regulators”, Automatica, Vol.31, No.3, pp.435-450, 1995.
[2] T.L. Lai, “Asymptotically efficient adaptive control in stochastic regression models”, Adv. in Applied Math., 7, 23-45, 1986.



Remarks

In the analysis of STR

* The convergence of the averaged regret of adaptive prediction is more relevant
than the convergence of the LS itself. A detailed analysis of LS can provide a
“sharp bound” for a certain accumulated weighted regret regardless of the input
signal, which turns out to critical for further analysis of the nonlinear closed-loop
stochastic systems under STR.

« The martingale theory has played a fundamental role in dealing with non-
stationary and correlated signals or data. This may continue to be so when we deal
with more complicated data or signals that are generated from complex stochastic
feedback systems, where independency and stationarity are not hold.



Some Related Problems and Results

* More on minimum phase linear stochastic systems

MIMO with colored noises [1], and SISO with multiple delay and model
reference[2].

* Non-minimum phase linear stochastic systems

The controllability of the estimated model is a key issue, which can be
guaranteed (see [3]) by a random regularization approach combined with the
self-convergence property established in [3] for the weighted LS proposed in
[4]. An asymptotically optimal adaptive LQG control is given in [5].

[1] L.Guo and H.F.Chen, “The Astrém-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers”, |IEEE-TAC, 36(7), 1991.
[2] W. Ren and P.R. Kumar, “Stochastic adaptive prediction and model reference control”, IEEE-TAC, 39, 2047-2060, 1994.

[3] L. Guo, “Self-convergence of weighted Least-squares with applications to stochastic adaptive control”, IEEE-TAC, 41(1), 79-89, 1996.

[4] B. Bercu, “Weighted estimation and tracking for ARMAX models”, SICON, 33, 89-106, 1995.

[5] T. E. Duncan, L.Guo, B.Pasik-Duncan, “Adaptive continuous-time linear quadratic Gaussian control”, IEEE-TAC, 44(9), 1652-1662, 1999.



Some Related Problems and Results

« Jump Markov parameter linear stochastic systems

A necessary and sufficient condition is given in [1] for adaptive
stabilization in discrete-time, which is different from that for the non-
adaptive case[2], and reveals an attenuation of feedback capability in
the presence of jump parameter uncertainty.

There are also many investigations in continuous-time, see, e.g., [3]
together with the references therein, and a complete characterization is
yet to be found.

[1] X. Feng and L. Guo, “Necessary and sufficient conditions for adaptive stabilizability of jump linear systems”, Communications
in Information and Systems , 1(2), 205-224, 2001.

[2] Y. Ji and H.J. Chizeck, “Jump linear quadratic Gaussian control: steady-state solution and testable conditions”, Control Theory
and Advanced Technology, 6(3), 289-319,1990.

[3] P.E. Caines and J.F. Zhang, “‘On the adaptive control of jump parameter systems via nonlinear filtering”, SIAM J. Control and
Optimization , 33(6), 1995.



2. PID Control



Problem Formulation

@ Let x(t), v(t) and a(t) be the position, velocity and
acceleration of a moving body in R at time instant t.

@ Assume that the external forces acting on the body consist of
f and u, where f = f(x,v) is a nonlinear function of both the
position x and velocity v, where u is the control force.

@ The Newton's second law gives

ma(t) = f(x(t),v(t)) + u(t)



State space equation

Denote x1(t) = x(t) and x(t) = dz(:) = x(t), then the state

space equation of this basic mechanic system under PID control is

X1 = X2,
Xy = f(le Xz) + u(t), (1)
u(t) = kpe(t) + ki for e(s)ds + kddZ—(:),

where x1(0), x2(0) € R and e(t) = y* — x1(t), and f(x1,x2) is an
uncertain function.



The Class of Uncertain Functions

of of

S S L]_, |a—)<2| S L2, VX]_, X> & R}

gle,Lz — {f < CI(RZ) 0x1

where L1 and L are positive constants, and C!(RR?) denotes the
space of all functions from R? to R which are locally Lipschitz in
(x1,x2) with continuous partial derivatives.

@ [, and Ly correspond to the upper bounds of the
“anti-stiffness” and the “anti-damping’ coefficients of the
nonlinear systems, respectively.



The parameter manifold

Let us introduce the following 3-dimensional parameter manifold:

kp
Qpig = { ki
Kd

It is open and unbounded.

kp >[4, ki >0, (kp — Ll)(kd — L2) > ki + Lg\/k,‘(kd + Lg)}

An illustration:
L1 =5 and L, =5,
0 < kp, ki, kg < 50.




Theorem 2.1

Consider the above PID controlled nonlinear uncertain system.
Then, whenever (kp, ki kq) € Qpid, the above PID control system
will satisfy

lim Xl(t) — y*, lim Xg(t) =0,

t—00 t—00
exponentially fast, for any f € %, |,, any initial state
(x1(0), x2(0)) € R? and any setpoint y* € R.

Remark. The above theorem was proven in [1]. Extensions to high-dimensional
uncertain nonlinear systems can be found in [2].

[1] C.Zhao and L.Guo, “PID controller design for second order nonlinear uncertain systems”, Sci. China Inf. Sci., 60(2): 022201, 2017.
[2] J.K.Zhang and L. Guo, “Theory and Design of PID Controller for Nonlinear Uncertain Systems”, IEEE Contr. Syst. Lett., 3(3), 643 - 648, 2019.



Remark

Theorem 2.1 is a global result. It demonstrates that PID controller
has large-scale and two-sided robustness in the following sense:

de(t)
dt

u(t) = kye(t) + kif e(s)ds + kg,
0

' (kp:ki:kd) € 'Qpid



@ Actually, the selection of the PID parameters has much
flexibility. More performance requirements including the
transient may be further studied by optimizing the PID
parameters from the manifold £2,,4.

@ A natural question:

Is 2,4 necessary?



Case |: an affine situation

| et us consider

of f *f
— <Ly, 8_ < L, 8—:0, ‘v’xl,XQER},

ng’Lz - {f - C2(R2) 6)(1 8x2 8X2
2

where L1 > 0, L, > 0 are constants and C%(R?) is the space of
twice continuously differentiable functions from R? to R.



Theorem 2.2

For any f € ¢, 1,, any initial conditions and any setpoint y* ¢ R,
the control system satisfies

Aalty=yn ol =0,

if and only if the PID parameters (kp, ki, kq) belongs to the
following 3-dimensional manifold:

kP

kp > [q1, k; > 0, (kp — Ll)(kd — Lz) > k,‘}.

C.Zhao and L.Guo, “PID controller design for second order nonlinear uncertain systems”, Sci. China Inf. Sci., 60(2): 022201, 2017



Remark: The capability of PID

Given a PID controller with parameter (kp,k,-,kd)(k; > 0), what is
the largest possible class of nonlinear uncertain functions it
can deal with?

Note that the “size” of ¢, ;, can be “measured” by L;, L>. The
boundary of

{(L1,12) € R?| Ly < kp, Lo < ka — ki(kp — L1) 71}

may reflect the maximum capability.

kep - (Ll _ kp)(Lz —kg) = k;




Case IlI: equilibrium case

When (y*,0) is an equilibrium point of the open-loop systems, i.e.
f(y*,0) =0, the I-term is not necessary for regulation.

Define a functional class

f f
or < Ly, or < Ly, Vx1, x2, f(y",0) = O}

Fliloy* = {f e CHR?) o o




Theroem 2.3

-
X1 — X2

{ Xo — f(Xl,Xg) —+ U(t)
L u(t) = kpe(t) + kqgé(t)

where the unknown f € F;, 4, . Then forany f € F 1, ,~, we
have

tlrgoxl(t) =y, lim xx(t) =0

t— o0

if and only if the PD parameters (kp, kg) lie in the following
2-dimensional manifold:

de == {(kp, kd)|kp > L1, kg > L2}.

Remark. The proof follows the Markus-Yamabe theorem, which had been a conjecture in
ODE and proven to be true for nonlinear systems in the plane.



A further formula for PID parameters

One way to further specify the PID parameters from 2,4 is given
by [1]:

( kp — kap + wokad

{ ki = wokap

| kg = kag + wo

where wg can be any positive constant above a lower bound
explicitly given in[1], and where (kap, kag) is a given pair of real
numbers such that the following second order polynomial has zeros
in the left-half plane:

s° + kads + kap = 0.

[1] S. Zhong, Y. Huang and L. Guo, “A parameter formula connecting PID and ADRC”, Sci. China Inf. Sci., doi: 10.1007/s11432-019-2712-7, 20109.



A Reparameterization

u(t) = kape(t) + kage(t) — fi + F(t),

where e(t) = r(t) — x1(t), r(t) is a designed transient process, and

= i koael®) + oy [ () e(0)|

can serve as an online estimator for the uncertain dynamics f.

Remark. The above formula stems from the inherent connection between the PID and the ADRC
(Active disturbance rejection control) proposed by J.Q. Han in [1](see also [2]), where a key
ingredient is an extended state observer (ESO) used for estimating the uncertain dynamics. The
ESO may be designed as a linear one[3], and the reduced order linear ESO[4] will give the above
estimator for the unknown f.

[1] J. Q. Han, “Auto-disturbance rejection control and its applications”, Control and Decision, 13(1), 1998 (in Chinese).

[2] J. Q. Han, “From PID to active disturbance rejection control”, IEEE Trans. on Industrial Electronics, 56, 900-906, 2009.

[3] Z. Gao, “Scaling and bandwidth-parameterization based controller tuning”, Proc. Amer. Control Conf. , 6, 2006.

[4] Y. Huang, W. Xue, “Active disturbance rejection control: methodology and theoretical analysis”, ISA trans., 53(4), 963-976, 2014.



An illustration
X, =X,
X, =asin x, +bx, +u

where |a|] < 1,|b| < 1, unknown, x;(0) = 3,x,(0) = 2. Lety* = 1.
Setkyp = 1,kgq = 2,0, = 7.

Comparison of the estimators of f

S
— f(x1,x2)

kf*f

The response curves of 10 systems

3.5

— a=-0.57,b=0.85
— a=0.58,b=0.66
a=0.31,b=-0.48 ||
a=-0.95,b=-0.57
a=0.57,b=0.05 ||
a=0.84,b=-0.2

a=-0.02,b=-0.04
a=0.67,b=0.99 |
a=-0.73,b=0.21
a=0.52,b=0.89 ||

X, (8

f and its two estimators
o

a=-0.95, b=-0.57

0 2 4 6 8 10

t ‘ f= wo{kade(t)+kap '/Ot e(s)ds+é(t)}




An Extension

Consider the SISO system,

{)’( f(x)+g(x)u, xeR"”
y = h(x),

where f : R” - R", g : IR" — R"” and h: R” — R are sufficiently
smooth unknown functions.

Extended PID Controller:

u(t) = kie(t) + ko fot e(s)ds + koé(t) + - - - + kpel" V(1)

Remark. General structure with relative degree n. Globally defined
with global or semi-global stabilizability. Large scale and two-sided
robustness. Differential trackers may be used.

C. Zhao and L. Guo, “Extended PID control of nonlinear uncertain systems,” arXiv: 1901.00973, 2019



Remarks

Some related problems on MIMO, stochastic, and multi-agent
nonlinear uncertain systems may also be investigated. |t would be
Interesting to further consider

@ Situations such as saturation, dead-zone, time-delay, sampled
data and observation noises:

@ Other extensions of the classical PID to e.g., adaptive and
nonlinear PID, for more general uncertain nonlinear systems;

@ Making more efforts in combing classical ideas with modern
methods.



3. Feedback Capability



A Theoretical Framework

lNoise

> > Uncertain >

‘ JFiJie ¥
Feedback Law

uel

sup {size(F) mf sup sup |y:(f,u)| < o0, Vyo € ]R}
F U feF t>0



System Information

» Uncertain System

Information = prior + posterior
= Iog + I;
Iy = prior knowledge about the uncertain system
I; = posterior knowledge about the uncertain system

= {y1, Y2,°- -, yt} (Observations/Data)



Feedback Mechanism

e Feedback signal u; : there is a measurable mapping
fi R 5 RY

such that
Uy = ft(yO) Y1, 3yt)

e Feedback law u :
u={u, t>0}
e Feedback mechanism U:

U = {u|u is any feedback law}



‘The Critical Value b = 4.

Yt+1 = f(ga yt) + up + W41

Let the sensitivity function satisty

éﬁgf — G)('x'b): r — o, b 2 0?

where 0 € R! is unknown and {w;} is a white noise or
bounded disturbance.

Theorem (b =4 is critical):

The above class of systems is globally stabilizable by feedback

mechanism if and only if b < 4.

Remark. This theorem was first found and proven for the case
f(6,y:) = 60f(y:) in [1], with the present case given in [2].

[1] L. Guo, “On critical stability of discrete-time adaptive nonlinear control”, TEEE-TAC, 42(11), 1488-1499, 1997.
[2] C. Li and L. Guo, “On feedback capability in nonlinearly parameterized uncertain dynamical systems” IEEE-TAC,
56(12), 2946-2951, 2011.



A Polynomial Criterion'

Multiple parameter case
Yer1 = 07 f(ye) + ur + wega

e N cO={HeRP: |0 <R} is an unknown vector;

e {w;} is either bounded or Gaussian white noise;

o f(ye) = [filye): -+, fo(ye)]” belongs to:
F(b) = {f() . fi(z) = O(|z|%), as z — oo}

where b= (by---by), with by > by >--- > b, >0, and b; > 1.



Define a characteristic polynomial using b;:

P(z) = 2P —by2P + (by — bo)2? '+ -+ (b,_1 — by)z + b,

Theorem Let f € F(b) be a nonlinear function.
Then the above uncertain nonlinear dynamical sys-
tem with 6 € © is globally stabilizable by the feed-

back mechanism if and only if

P(z) >0, Vze(l,b)

Remark. The polynomial P(z) was introduced in [1] with a
necessity proof, the complete proof was given in [2] and [3] for

deterministic and stochastic systems respectively.

[3] C.Liand J. Lam, “Stabilization of discrete-time nonlinear uncertain systems by feedback based on LS algorithm” SICON, 51(2), 1128-1151, 2013.



Rationale behind Limitations'

e Stochastic embedding can give

Ely? 1 |FY] = E[(f(8,¢0) — £(8,00))|FL] + (6, 60) + 0.
where f (6, ¢;) is the best mean square prediction.

e Conditional Cramér-Rao-like inequality for dynamical
systems will provide a lower bound to the prediction error
for any feedback control, expressed by the Fisher

information matrix and the sensitivity function.

e Analysis of the nonlinear dynamics will then lead to a
connection to the polynomial criterion.

C.Y. Liand L. Guo, “A dynamical inequality for the output of uncertain nonlinear systems”,
Sci. China Inf. Sci., 56:012201(9), doi: 10.1007/s11432-012-4622-7, 2013.



The Critical Value g + /2

Nonparametric control system
Yir1 = [(y) +up + wep1, Yo € R'
with unknown function f(-) € F = {all R — R! mappings}.

The Lipschitz norm on F:

Hf” — sup ‘f(ﬂ?) o f(y)|
vty T =Y f

The set of uncertain functions:
F(L)y={feF: |[fl<L}

L: Serves as a measure of uncertainty e



Theorem. The above class of uncertain dynamical
systems described by F(L) is globally stabilizable
by the feedback mechanism if and only if

L.L. Xie and L. Guo, “How much uncertainty can be dealt with by feedback?”, IEEE-TAC, 45(12), 2203-2217, 2000.



A General Theorem

Semi-parametric model:

Yir1 = 9(0,¢¢) + f(ye) + weqpr, >0,

where the uncertainties 6 € © C R™, f € F(L), w is bounded,
and (rbl‘. — [yt: Yt—1, - :yt—p—i-'l s Uty Up—1 4" ut—f}ﬂ"l]?-' Assume thﬂt—
the system is “minimum phase” and that the sensitivity

function of ¢(-,-) is bounded by a linear growth, etc.

Theorem.  The above uncertain dynamical system with
{(0,f) € (©,F(L)} is globally stabilizable by the feedback

mechanism if and only if

L<%+\/§

C.D. Huang and L. Guo, “On feedback capability of a class of semiparametric uncertain systems”, Automatica, 48(5): 873-878, 2012.



Remarks

e Modeling and feedback are two main techniques in dealing
with uncertainties, and the above theorem quantitatively
shows how modeling and feedback could be complementary

in control systems design.

e Further results may be found for both parametric case (e.g.,
[1],[2]) and nonparametric case (e.g., [3],[4]). Fundamental
limitations on the sampled-data feedback mechanism are

investigated in [5] followed by a refinement in [6].

[1] C. Li and L. Guo, ”On feedback capability in nonlinearly parameterized uncertain dynamical systems”, IEEE-TAC, 56(12), 2946-2951, 2011.

[2] Z. Liu and C. Li, “Is it possible to stabilize discrete-time parameterized uncertain systems growing exponentially fast?” ,SICON, 57(3), 1965-1984, 20109.

[3] B. Li and G. Shi, “Maximum Capability of Feedback Control for Network Systems”, Proc. 37th Chinese Control Conference, 6547-6554, 2018

[4] V.F. Sokolov, “Adaptive stabilization of parameter-affine minimum-phase plants under Lipschitz uncertainty”, Automatica, 73, 64-70, 2016.

[5] F. Xue and L. Guo, “On limitations of the sampled-data feedback for nonparametric dynamical systems”, J. Systems Science and Complexity, 15(3), 225-250, 2002.
[6] J.L.Ren, Z.B.Cheng and L.Guo, “Further results on limitations of sampled-data feedback”, J. Systems Science and Complexity, 7:817-835, 2014.



Remarks I

e All the impossibility theorems presented in this part enjoy
universality in the sense that they are actually valid for any

larger class of uncertain systems and for any feedback law.

e The main results indicate that the feedback capability
depends on both information uncertainty and structural
complexity, and that adaptive prediction(estimation) and

“sensitivity” functions play a crucial role.

e There appears to be fundamental differences between
continuous-time and sampled-data (or discrete-time)
feedbacks for uncertain nonlinear systems, when the

sampling rate is prescribed.



Concluding Remarks

« This lecture has presented some basic results on feedback and uncertainty
for three basic problems, i1.e., STR, PID and feedback capability. There are
many more problems remain to be solved or investigated.

* The rapid development of information technology makes it possible to
Investigate more and more complex control systems, and at the same time
brings a series of interesting new problems, whose investigation may still
depend on our understanding of the basic concepts and problems in the field.



Concluding Remarks(cont’d)

« Mathematical models paly a basic role in control theory even if they may have
large uncertainties. However, if the models are not regarded as approximations of
the real-world systems and, instead, just taken as an intermediate step in
controller design, then great efforts are still needed towards a comprehensive
understanding of the boundaries of practical applicability of the controller.

 Furthermore, besides uncertainties, many systems to be controlled or regulated in
social, economic, biological and the future “intelligent” engineering systems,
may have their own objectives to pursue. Such complex uncertain systems, may
not belong to the traditional framework of control or game theory, and call for
more research attention[1].

[1] R.R. Zhang and L. Guo, “Controllability of Nash Equilibrium in Game-Based Control Systems”, IEEE-TAC, 64(10): 4180-4187, 2019
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