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Motivations

A semi-plenary at the CDC provides a unique opportunity to reflect on the 

past and to look at the future …

I spent 20+ years understanding linear objects from a nonlinear 

perspective and I now believe that

linearity and time-invariance are a curse

They confuse our intuition and delay our understanding ….

pretty much like Euclidean geometry and the standard notion of 

orthogonality obfuscate our understanding of space

Before spending another 20+ years in trying to (mis-)understand more 

linear objects I would like to reflect on some of the lessons I have learnt.
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The rules

How to break the curse of linearity and time-invariance

1. Study linear, time-invariant systems

2. Avoid matrix multiplication/inversion

3. While differentiating, keep track of constant terms

4. Never use frequency or Laplace transforms

5. If need use, matrices always act on something 

6. Replace linear algebra with interconnection, invariance, pde’s, 

coordinates transformations, the principle of optimality, dynamic 

programming, trajectories, differential operators, graph theory



The plan

1. Moments and phasors (Giordano Scarciotti)

2. The Loewner functions(Joel Simard)

3. Persistence of excitation (Alberto Padoan)

4. Adaptive control (Kaiwen Chen)

5. Optimal control (Mario Sassano) 

Analysis

Design



Moments are ubiquitous in maths/physics/biology ….

Moments in probability: 1, mean, variance, skewness, ....

Moment of a force/torque: first order moment

Electrical dipole: first order moment

Moment of inertia: second order moment

Phasors: first order moments

Biomass concentration: first order moment

Cell density: zero-th order moment

T. Stieltjes, Recherches sur les 
fractions continues. Annales de la 
Faculté des Sciences de 
l'Université de Toulouse pour les 
Sciences Mathématiques et les 
Sciences Physiques, 1984.



… and systems theory

h is the impulse response of a linear time-invariant (SISO) system    

0-moment at      :

k-moment at      :
L
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Moments: from transfer functions to state space
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Moments: from transfer functions to state space
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The notion of moment – Linear systems

The interpolation point The system

Steady state response

Moments

Asymptotic stability
Excitability

Observability
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The notion of moment – Linear systems – Swapped

The systemThe interpolation point
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The system The interpolation point
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The notion of moment – Linear systems – Summary

The systemThe generator 

(interpolation points)

Steady state response

Moments

Steady state response

Moments

Krylov projectors

A. N. Krylov, On the numerical solution of the equation by which, in 
technical questions, frequencies of small oscillations of material systems 
are determined, Izv. Akad. Nauk SSSR, ser. fis.-mat., 1931



The notion of moment – Linear systems – Questions

Is the interconnection approach adequate to extend the notion of moment 

to nonlinear systems?

How do we interpret the non-observability condition?

Can we provide an intrinsic interpretation of the swapped interconnection 

without using duality?

Can we simultaneously interconnect generators left and right? 

How do we interpret the excitability condition?



The notion of moment – Nonlinear systems

The interpolation point The system

Moments

Steady state response

Asymptotic stability
Excitability

Observability

Poisson stability



The notion of moment – Nonlinear systems

The interpolation point The system

Moments

Steady state response



The notion of moment – Nonlinear systems

The signal generator captures the requirement that one is interested 

in studying the behaviour of the system only in specific circumstances

The interconnected system possesses an invariant manifold

and the dynamics restricted to the manifold are a copy of the 

dynamics of the signal generator

The interpolation point The system

is by definition the moment of the nonlinear system at



The systemThe interpolation point

Asymptotic stability

Moments

Non-observability

Excitability

Controllability

CIBS

The notion of moment – Nonlinear systems – Swapped

Poisson stability



The system The interpolation points

The notion of moment – Nonlinear systems – Swapped

With special 

“care”

Non-observability

Moments



The notion of moment – Linear systems – Questions

Is the interconnection approach adequate to extend the notion of moment 

to nonlinear systems?

How do we interpret the non-observability condition?

Can we provide an intrinsic interpretation of the swapped interconnection 

without using duality?

Can we simultaneously interconnect generators left and right? 

How do we interpret the excitability condition?

Before answering these questions we take a detour into circuits theory



Phasor transform and moments

The phasor transform coincides with the Sylvester equation 

defining the moment (at the phasor angular frequency)

The component of the matrix P are the phasors of the currents 

and of the integrals of the currents

The phasor of the output response is the moment of the system 

(at the phasor angular frequency)

K.A.R. Steinmetz & E.J. Berg , "Complex Quantities and Their Use in 
Electrical Engineering". Proceedings of the International Electrical  Congress, 
Chicago, American Institute of Electrical Engineers. 1893

A link between the phasor transform and moments:

to be used for nonlinear circuits and switched mode electronics



Phasor transform and basic circuit elements

Phasor 

transform

It contains 

information on 

the “regime”

Discontinuous 

phasor 

transform

L



Phasor transform and circuit elements/properties

Time domain Phasor domain

Average power Reactive power

Switched mode operation with 50% duty cycle

½ in the 

sinusoidal case

It contains information on the “regime”



… back to the plan …

1. Moments and phasors

2. The Loewner functions

3. Persistence of excitation

4. Adaptive control

5. Optimal control 



The notion of moment – Double-sided interconnection

The Loewner (divided difference) matrix

C. Loewner, Über monotone Matrixfunktionen, 
Mathematische Zeitschrift, 1938.

L



The notion of moment – Double-sided interconnection

Moment at li Moment at mi

The right (!) interpolation points The left (!) interpolation points
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The notion of moment – Double-sided interconnection
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The notion of moment – Double-sided interconnection

The right (!) interpolation points The left (!) interpolation points

Generalized reachability 

and observability 

matrices



The notion of moment – Double-sided interconnection

The Loewner matrix allows double-sided interpolation, but heavily relies on 

the transfer function and on linearity

The associated Sylvester equation is not related to any invariance condition

L



The notion of moment – Double-sided interconnection

The Loewner matrix allows double-sided interpolation, but heavily relies on 

the transfer function and on linearity

The associated Sylvester equation is not related to any invariance condition

Two invariance-like 

equations



The notion of moment – Double-sided interconnection

The shifted left and shifted right Loewner matrices 

as Lie derivatives “along the interpolation points”



The notion of moment – Double-sided interconnection

The left- and right-

Loewner matrices 

transform 

the cascade into a 

parallel 

interconnection



The notion of moment – Double-sided interconnection

The Loewner matrices 

define the interpolating system

Moment at li

Moment at mi



The notion of moment – Double-sided interconnection

The Loewner matrices 

define the interpolating system

The autonomous behaviour of the interpolating system is such that 

the shift and the time differentiation commute TI
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define the interpolating system

The autonomous behaviour of the interpolating system is such that 

the shift and the time differentiation commute with some correction



The notion of moment – Double-sided interconnection

The left- and right- Loewner “functions” transform 

the cascade into a parallel interconnection

The shifted left and shifted right Loewner “functions” 
are Lie derivatives “along the interpolation points”

Two (?) invariance-like equations

The autonomous behaviour of the interpolating system is such that 

the shift and the time differentiation commute with some correction



The notion of moment – Double-sided interconnection

The left- and right- Loewner “functions” transform 

the cascade into a parallel interconnection

The shifted left and shifted right Loewner “functions” 
are Lie derivatives “along the interpolation points”

The autonomous behaviour of the interpolating system is such that 

the shift and the time differentiation commute with some correction

Three invariance-like equations



… making progress …

1. Moments and phasors

2. The Loewner functions

3. Persistence of excitation

4. Adaptive control

5. Optimal control 



Excitability 

Moments

Steady state response

Asymptotic stability
Excitability

Observability

Poisson stability

Excitability
Reachability

L



Excitability  – Linear systems 

The excitation distribution The excitation rank condition

The excitation distribution and the excitation rank condition do not 

rely on linear concepts (such as the Cayley-Hamilton theorem)

Excitability
Reachability

L



Excitability  – Nonlinear systems

Excitation distribution ≠ Strong accessibility distribution

The excitation distribution



Excitability  – Nonlinear systems

The excitation distribution

The excitation rank condition

Excitation rank condition ≠ Strong accessibility rank condition



Excitability  – A geometric characterization

Suppose solutions are analytic

Solution 

is PE

PD for all t and some T

The excitation 

rank condition 

holds at every



Excitability  – A geometric characterization

Suppose solutions are analytic 

and      is almost periodic 

Solution 

is PE

PD for all t and some T

The excitation 

rank condition 

holds at 

H. Bohr, "Zur Theorie der fastperiodischen 
Funktionen I" Acta Math., 1925



Excitability  – Applications

The excitability rank condition plays a fundamental role in model 

reduction problems from data

Time



Excitability  – Applications

The excitability rank condition, hence the PE condition, plays a 

fundamental role stability analysis of skew-symmetric systems

Almost-periodicity, excitability rank condition, minimality 

imply uniformly globally exponential stability

A. Cayley, "Sur les determinants gauches" , Crelle's Journal, 1847.



... more progress …

1. Moments and phasors

2. The Loewner functions

3. Persistence of excitation

4. Adaptive control

5. Optimal control 



Adaptive control

Excitability and PE naturally lead to adaptive control

Where is the curse of linearity/time-invariance in adaptive control?

Classical adaptive control I&I adaptive control

Design the update law to 

create a passive 

interconnection

Design the update law to 

create an L2 stable 

cascade

TI



Adaptive control

Excitability and PE naturally lead to adaptive control

Where is the curse of linearity/time-invariance in adaptive control?Classical adaptive control I&I adaptive control

Adaptation 

gain

Passivity?

TI



Adaptive control – Congelation of variables

Excitability and PE naturally lead to adaptive control

Where is the curse of linearity/time-invariance in adaptive control?

Passivity?

A new passive 

interconnection

S. Bochner, Vorlesungen über Fouriersche Integrale, 1932



Adaptive control – Congelation of variables

A new passive 

interconnection

A new passive interconnection



Adaptive control – Congelation of variables

The congelation of variables allows to recover, in simple cases, passive 

interconnections.

How do we extend this idea to more general systems?

Is time-invariance exploited in other steps of classical adaptive design?



Adaptive control – Congelation of variables

Kreisselmeier filters

(input, output, regressor)

A congealed change of 

coordinates



Adaptive control – Congelation of variables

The re-parameterized system

The inverse dynamics



Adaptive control – Congelation of variables

The inverse dynamics

A change of coordinates, the chain rule and standard backstepping …



Adaptive control – Congelation of variables

The time-invariant case does 

not reveal all interconnections

The congelation of variables 

allows constructing a new 

interconnection

TI

The interconnections are 

however present whenever 

parameters vary



Adaptive control – Congelation of variables

I&I adaptive control A general stabilization result

TI
L. Euler, Solutio problematis ad 
geometriam situs pertinentis, 1741



… and to conclude

1. Moments and phasors

2. The Loewner functions

3. Persistence of excitation

4. Adaptive control

5. Optimal control 



Optimal control

Timaeus of Taormina, „Queen Dido and the isoperimetric problem“, c. 345 BC – c. 250 BC

Optimal control problems can be solved using dynamic programming or 

Pontryagin’s minimum principle

Combining both approaches may yield a new perspective and new 

optimality conditions

The basic linear ingredients

L



Optimal control – A graphical interpretation

For any initial condition and any t>0 the 

composition has a fixed point

Flow along the 

optimal closed-

loop system

Lifting on the 

invariant subspace 

of the Hamiltonian

Flow backward 

along the 

Hamiltonian system

Projection 

onto x



Optimal control – A graphical interpretation

… and equivalently

Flow backward 

along the optimal 

closed-loop system

Flow along the 

Hamiltonian system

Projection 

onto x

Optimal 

path

Non-optimal 

path



Optimal control – A graphical interpretation

The optimal feedback gain and the solution 

of the Riccati equation are such that

Stability

Fixed point



Optimal control – Linear systems

The optimal feedback gain and the solution 

of the Riccati equation are such that

This relies on Cayley-Hamilton theorem L

Polynomial 

in K*

Linear in P*



Optimal control – Linear systems

The optimal feedback gain and the solution 

of the Riccati equation are such that

Positive semi-definite, also for 

robust control problems
Positive semi-definite

This is amenable to the use of optimization algorithms on the 

manifold of positive definite matrices with cost



Optimal control – Nonlinear systems

The basic nonlinear ingredients

Skew-symmetric



Optimal control – A graphical interpretation

Exactly the same interpretation as for linear systems

Flow backward 

along the optimal 

closed-loop system

Flow along the 

Hamiltonian system

Projection 

onto x

Optimal 

path

Non-optimal 

path



Optimal control – A graphical interpretation

The optimal feedback gain and the solution 

of the optimal costate equation are such that

Stability

Fixed point

This is amenable to compute arbitrarily accurate approximations 

of the optimal control law without solving any PDE 



Summary

1. Moments and phasors 

2. The Loewner functions

3. Persistence of excitation

4. Adaptive control 

5. Optimal control

Analysis

Design



Some take-away messages

1. Linearity and time-invariance provide a very powerful structure which 

may be misleading

2. A careful study of linear, time-invariant systems with abstract tools 

allows 

• developing nonlinear/time-varying enhancement of analysis 

and design tools

• improving our understanding of  essential features and 

interactions

• ….

• breaking the curse of linearity and time-invariance
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